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57 ABSTRACT

Detecting online attacks is described, including identifying
one or more events associated with users on a social graph.
For each type of event of the one or more events, generating
at least one directed acyclic graph (DAG), where each node
on the DAG represents a node on the social graph where an
event of the type occurs and each edge on the DAG represents
a propagation of the event from a first node of the edge to a
second node of the edge.

18 Claims, 11 Drawing Sheets
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1
SYSTEMS AND METHODS FOR DETECTING
ONLINE ATTACKS

BACKGROUND

Online users often encounter unsolicited, unwelcomed,
phishing, spoofing, and/or deceiving messages (collectively
referred to as malicious messages or malicious information).
To detect and mitigate malicious messages, some data pro-
cessing networks rely on the online users to report malicious
messages. However, not all malicious messages are reported,
and some reports are false positive (e.g., reporting messages
that are not malicious).

Some data processing networks employ automated (e.g.,
not relying on user reporting) techniques to detect and miti-
gate malicious messages. However, on a social network, per-
petrators of malicious information may exploit the social
connections of online users to avoid detection. For example,
these sophisticated malicious information perpetrators may
create many fake accounts (e.g., sybil accounts) and establish
social connections with the sybil accounts.

To further disguise the sybil accounts to avoid detection,
fake positive feedback may be associated with the sybil
accounts (e.g., initiating and/or receiving “likes,” “+1,” com-
ments, reposts, re-shares, etc.) to inflate the reputation and/or
standing of these accounts on a network. Sybil accounts with
a high reputation are used to spread malicious messages
undetected and carry out online attacks.

SUMMARY

The subject matter described herein relates generally to
data processing networks and, more particularly, to detecting
online attacks.

The subject matter described herein may provide various
advantages, such as reducing unproductive use of resources in
addressing false positive attacks, taking advantage of social
graphs or the like to better detect attacks, and providing better
user experience with a higher accuracy in detecting and miti-
gating attacks.

The subject matter includes a method for detecting online
attacks, including identifying one or more events associated
with users on a social graph. For each type of event of the one
or more events, generating at least one directed acyclic graph
(DAG), where each node on the DAG represents a node on the
social graph where an event of the type occurs and each edge
on the DAG represents a propagation of the event from a first
node of the edge to a second node of the edge.

In some implementations, the propagation of the event
from the first node of the edge to the second node of the edge
is based on the event occurs at a time T1 at the first node, the
event occurs at a time T2 at the second node, and T1 is earlier
than T2.

In some implementations, the propagation of the event
from the first node of the edge to the second node of the edge
comprises propagation of a first event occurs at the first node
to a second event occurs at the second node, and content of the
first event is related to content of the second event.

In some implementations, the event may be a posting of
information on a social network.

In some implementations, the method may include deter-
mining a cluster of the at least one DAG; and determining a
score associated with the cluster.

In some implementations, the score is based on a size of the
cluster, which is a sum of a number of nodes of the at least one
DAG.
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In addition to a method as described above, the implemen-
tations may include a device, a system, and/or a computer-
readable medium, but are not limited thereto.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example processing pipeline for some
implementations.

FIG. 2 shows an example environment suitable for some
example implementations.

FIG. 3 shows an example social graph.

FIGS. 4A-4D show a few stages of an example directed
acyclic graph created based on the social graph of FIG. 3.

FIGS. 5A-D show additional examples of DAGs.

FIG. 5E shows examples of additional directed acyclic
graphs.

FIG. 6 shows an example process according to some imple-
mentations.

FIG. 7 shows an example computing environment with an
example computing device suitable for use in some example
implementations.

DETAILED DESCRIPTION

The subject matter described herein is taught by way of
example implementations. Various details have been omitted
for the sake of clarity and to avoid obscuring the subject
matter. The examples shown below are directed to structures
and functions for implementing and detecting online attacks.

FIG. 1 shows an example processing pipeline 100 for some
implementations. Pipeline 100 includes four stages labeled as
event detection 110, propagation analysis 120, clustering
analysis 130, and post processing 140. Pipeline 100 may
include other stages that are not shown, such as input stage
and output stage. The stages are conceptual stages. In imple-
mentations, two or more stages may be combined in a unit or
module, such as combining an input stage with an event
detection 110 stage or combining an event detection 110 stage
with a propagation analysis 120 stage.

One or more of the stages 110-140 may be executed in
parallel. For example, the event detection 110 stage may be
detecting events parallel (e.g., detecting multiple events asso-
ciated with one or more users and/or social graph at the same
time). A latter stage (e.g., stage 12-, 130, or 140) may be
executed in parallel (e.g., stage 120 performs the propagation
analysis in parallel, stage 130 performs the clustering analysis
in parallel, and/or stage 140 performs the post processing in
parallel).

One or more of the stages 110-140 may be executed con-
currently. For example, stage 100 may provide sets of events
to stage 120 for propagation analysis. After stage 110 pro-
vides the first sets of event to stage 120, stages 110 and 120
may be executed concurrently (e.g., while stage 110 is detect-
ing a second set of event, stage 120 is concurrently analyze
the first sets of events).

At the event detection 110 stage, one or more signs of an
attack (e.g., events) may be received, identified, reported, or
detected. For example, one user may report abuse, spam, or
malicious message (an event). The event may show or be
traced to another user (attacker). A system may be running an
attack detection process, which may detect or identify one or
more attacking events. The attack detection process may use
any one or more techniques to detect, identify, or determine
attacking events (e.g., determining that an event, which is in
the form of an email, is sent from an unknown source or an
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altered or fake address, identity, source, etc.). Detection tech-
niques include but are not limited to the following three
examples.

(1) Production of reported or abusive material: In this case,
an attack event may be the production or reproduction of
content (e.g., profile, post, photo or comment) by a user that
has been reported as abusive by at least another user or that
has been classified as abusive (e.g., by an automatic or semi-
automatic system).

(2) Propagation of a specific content: In this context, a
message (e.g., a post or comment) produced by a user is
considered as an event. The actual content of the message
(e.g., after a textual preprocessing) defines the type of the
event. Variations of this technique may include the consider-
ation of only messages that match specific keywords or pat-
terns with the content in an original post (e.g., to detect that a
message or post is not re-shared but is reproduced verbatim).

(3) Decrease in the user reputation score: In this case, an
event is detected when a user reputation score drops below a
certain threshold. Variations of this technique may consider
the maximum variation of the scores in one day and the
direction of the variation (increase or decrease).

In some implementations, a score can be computed or
determined based on one or more aspects of users, nodes,
and/or graphs. For example, a number of attack events found
on one graph or cluster of graphs may be compared to the
number of attack events found on another graph or cluster of
graphs. Other example aspects include user profiles, usage
history, frequency of usage (e.g., posting, messaging, etc.),
concentration of events of certain types, etc.

After one or more events are detected at the event detection
110 stage, to determine or increase the confidence level that
the events are attack events, pipeline 100 processes the events
through the propagation analysis stage 120 (described with
FIGS. 3 and 4A below), clustering analysis stage 130 (de-
scribed with FIGS. 4B-4D and 5A-5D below), and post pro-
cessing stage 140 (described with FIG. SE below). Pipeline
100, when it is deployed in a social network, takes advantage
of social connections or social graphs and the likes on the
network.

On a social network, malicious perpetrators may create
fake accounts and plant them in social connections or circles
(e.g., join social circles or invite other users, real or fake, to
join social circles). The fake accounts are used to perpetrate
malicious attacks.

Pipeline 100 is implemented to identify any social network
attack which leaves a trail of attack signals propagating
through a social graph. Attack examples include account
hijacking, spam clusters (a.k.a. spam farm), bulk creation of
fake accounts, production of content on behalf of users in
violation of the system policies, etc. A system that deploys
pipeline process 100 or the like may analyze user data in a
social network to identify, for example, a suspicious pattern
of'user behavior and/or other malicious behavior propagating
over the social network from user to user.

For example, after an event associated with a user is iden-
tified, reported, or detected at the event detection stage 110, if
the event propagates through a social graph, which the user in
on, the event may spread to other users on the same social
graph and/or different social graphs. Pipeline 100, in the
propagation analysis 120 stage and clustering analysis 130
stage, follows the spread or propagation of the attack event on
the social graphs.

The propagation of the events that are the same, similar, or
related to the a detected event on a social network provides
reliable evidence or a higher level of confidence that the
events are attack events. At the post processing 140 stage, the
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evidence is analyzed to provide a level of confidence that the
events are attack events. Post processing 140 stage may also
reveal that the users on the social graphs are attackers or sybil
users (Who might have created the accounts in the first place
or hijacked them). Pipeline 100 and it stages are described
further below with FIGS. 3-5.

FIG. 2 shows an example environment suitable for some
example implementations. Environment 200 includes
devices 205-245, and each is communicatively connected to
at least one other device via, for example, network 260 (e.g.,
by wired and/or wireless connections). Some devices may be
communicatively connected to one or more storage devices
230 and 245.

An example of one or more devices 205-245 may be com-
puting device 705 described below in FIG. 7. Devices 205-
245 may include, but are not limited to, a computer 205 (e.g.,
a laptop computing device), a mobile device 210 (e.g., smart-
phone or tablet), a television 215, a device associated with a
vehicle 220, a server computer 225, computing devices 235-
240, storage devices 230 and 245.

In some implementations, devices 205-220 may be consid-
ered user devices (e.g., devices that may be used by users to
perpetrate attack events and/or report attack events). Devices
225-245 may be devices associated with service providers
(e.g., used by service providers to provide services (e.g.,
including attack detection and mitigation, and/or store data).

For example, a user (e.g., Alice) may access, view, and/or
share content of' a webpage using user device 205 or210 on a
social network supported by one or more devices 225-245.
Alice may receive a malicious message and report the mes-
sage to the social network (e.g., to an administrator or the
social network or using a reporting page provide by the social
network). The social network may be executing programming
codes that implement pipeline 100 on by one or more devices
225-245. The event detection 110 stage of the pipeline 100
receives Alice’s report of the event and, after one or more
optional verification of the event, works the event through the
other stages of pipeline 100, which is described above and
further described below.

Any stage 110-140 (FIG. 1) may be executed sequentially,
parallelly, or a combination thereof. For example, a system
may contain many users on many social graphs, with each
user being associated with multiple events. Pipeline 100
(FIG. 1) may start with users on a social graphs and/or users
regardless of their associated social graphs. Pipeline 100 may
start with detecting different events associated with one user,
the same and/or similar events associated with different users,
or a combination thereof.

For illustration purposes, FIGS. 3-4D are described with
one set of same and/or similar events on one social graph.
FIGS. 5A-5D are described with multiple sets of same and/or
similar events on one social graph.

FIG. 3 shows an example social graph. A social graph can
have any number of nodes (e.g., from one node to five, 10, 50,
100, 500, 1000, a higher number, and any number in
between). Each node is associated with a user. The size and
composition of a social graph are based on the users and
connections among the users on the graph. Social graph 300,
shown with 10 nodes, is a graph where a link or edge shown
between two users (e.g., two nodes associated with the two
users) indicates that there is a two-way connection between
the two users (e.g., between Bob at node 2 and Daisy at node
4). Social graph 300 may be previously established, pre-
established, or established when needed (e.g., in pipeline 100,
FIG. 1).

In some implementations, event detection 110 (FIG. 1)
may start with a user (e.g., Daisy) on a social graph (e.g.,
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graph 300) and identify or detect one or more events associ-
ated with the user (e.g., a message associated with Daisy is
reported as spam or malicious). In other implementations,
event detection 110 may start with a user (e.g., Daisy) or, if
executed in parallel, two or more users including, for
example, Daisy. Event detection 110, propagation analysis
120, or another module may then determine or identify the
social graph that Daisy is on (e.g., social graph 300).

If social graph 300 needs to be established, starting with
user Daisy, social graph 300 may be built out (e.g., concep-
tually or in a digital representation) using Daisy’s social
connections to users Alice, Bob, Elen, and Fay (e.g., from her
contact list and/or social circles, etc.). The build out step then
repeats with the social connections of Alice, Bob, Elen, and
Fay and so on (e.g., with the social connections to newly
identified users, e.g., Chris, Gill, Haley, and Jason, that have
not been considered in the build out) until all users have been
considered (e.g., after processing user Ian, whose is con-
nected to users all have been considered in the build out).
When social graph 300 is built out, user Daisy is identified
associated with node 4 in this example.

In some implementations, the event detection 110 stage
analyzes data stream (e.g., user interactions and/or commu-
nication messages, etc.) to identify suspicious events that may
be evidence of an attack. Any attack events, messages,
anomalies, and/or abuses may be detected using any detection
technique. In some implementations, machine learning may
be employed in this stage to identify potential attack events.

Examples of possible attack events, whose propagation can
be tracked by the system, includes but are not limited to the
followings: any specific user action (sharing, posting, com-
menting, feedback, such as “+1” or “like”, etc.), any changes
in the user behavioral pattern, the production of any content,
any changes in the reputation of the user according to some
known metrics, etc.

Identifying or detecting an event includes identifying at
least the type of the event and at what time it has occurred
(e.g., the event associated with Daisy occurs atatime T;). The
type of the event may be used to distinguish among different
possible events or types of events that may occur and may be
used to track the propagation of events independently (e.g., in
parallel processes).

FIGS. 4A-4D show a few stages of an example directed
acyclic graph created based on the social graph of FIG. 3.
Although more than one type of events may be associated
with users on a social graph and there can be many social
graph onanetwork (e.g., onetype of events is referred to same
and/or similar events), FIGS. 4A-4D are described using just
one type of events on one social graph to illustrate a directed
acyclic graph (DAG). The DAG is created to show, for
example, propagation of an event or a type of events. The
propagation is analyzed to determine whether the event is an
attack event, the degree of the attack, directions of the attack,
the attackers (e.g., fake or sybil nodes), etc. In actual sce-
narios, a user may be associated with multiple events of
multiple types, and multiple DAGs may be created for a type
of events associated with a social graph. Examples of these
scenarios are described in FIGS. 5A-5D further below.

FIG. 4A is described in association with the propagation
analysis stage (120, FIG. 1). The propagation analysis 120
gathers the events recognized from the previous stage (e.g.,
event detection 110) and analyzes or determines possible
correlation of the events using a directed social graph or
directed acyclic graph (DAG) 400A. Propagation analysis
120 attempts to identify whether the events are likely to be
linked to a social network based phenomenon (e.g., a social
network based attack) or rather are false positive events.
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In an attack using fake users on a social network, the
attacking events are likely linked together following a social
graph. Many of these events are likely traceable to a plausible
propagation path on the social graph by analyzing their simi-
larities and/or temporal occurrences. If the events are not
correlated to the social network structure, such as random
false positive events, once the events are projected on the
social network they are likely to appear as isolated events
(e.g., not possible to cluster them to identify propagation
paths).

Propagation analysis 120 and clustering analysis 130 uses
a social network structure or social graphs to confirm or
increase confidence level of attacks on a social network or
attacks using a social graph or the like.

In some implementations, propagation analysis 120 fol-
lows an algorithm that considers two events occurring in
association with two users, e.g., Bob at node 2 and Daisy at
node 4. The two events propagate (e.g., from Bob to Daisy) if
the following conditions are all met: (1) Bob (at node 2) has a
social connection (e.g., a link, arc, or edge) with Daisy (at
node 4). (2) The two events occurred at both Bob and Daisy
have the same type (e.g., if the events are messages, they are
the same, similar, or related; if the events are actions, they are
the same, similar, or related). (3) The event at Daisy occurs at
atime T; that is later than the event at Bob occurs atatime T,
(i.e., T; is later than T,).

An event can possibly have caused another same or similar
event only if the latter event has occurred later and if the user
(e.g., Bob) causing the latter event is known to the other user
experiencing the event (e.g., Daisy). The social graph that
includes Bob and Daisy provides the evidence that Bob
knows Daisy. The temporal factor provides evidence of a
movement or propagation of the events and the direction of
the movement. The movement and direction can be used to
build a DAG to represent followership of attacks.

For a specific event type (e.g., an email message, a message
posted on a social network, etc.), the social edges correspond-
ing to a pairs of correlated events (e.g., pairs of messages that
are the same or similar) can be arranged in a graph structure
showing how an event of the event type has spread from one
node to other nodes. The graph structure becomes a Directed
Acyclic Graph (DAG) if formed with a temporal order.

FIG. 4A shows the DAG 400A, which is at a very early
stage and initially consists of only one node Daisy 4 (shown
in heavy dark circle). Node 4, which is identified by the
previous event detection 110 stage, is used to form DAG
400A for attack propagation analysis. The event detected to
occur at node 4 occurs at a time T.

Using social graph 300, FIG. 3 (shown as light-circled
nodes connected with broken-line edges with DAG 400A
merely for facilitating discussion herein), the nodes adjacent
to node 4 are identified (e.g., Bob at node 2, Elen at node 5,
and Fay at node 6). Applying the above described algorithm
for propagation analysis reveals that, for example, events of
the same type have occurred at node 2, node 5 and node 6, at
times T,, T,, and T, respectively. With this information,
DAG 400A is expanded to include nodes 2, 5 and 6. The edge
from node 2 is shown pointing to node 4 due to, for example,
T,<T;. The edge from node 4 points to node 5 due to, for
example, T;<T,. The edge from node 4 points to node 6 due
to, for example, T,<T..

DAG 400A shows that, for example, events of the same
type are propagating through some nodes. If an event is the
posting/reposting of a message or a post on a social network,
two posts are considered of same type if they have the same
content or similar content. The propagation of the event is the
posting and reposting of the message or similar message (e.g.,
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the message content or a link or hash code of the message), for
example, from node 2 to node 3 then to nodes 5 and 6. The
timestamps (e.g., T,, T5, T,, and T in microseconds) of the
events may be the times of receiving the message by Bob,
Daisy, Elen, and Fay.

Propagation analysis 120 may be executed in a parallel
processing computing system, network, or environment that
can identify large or very large (e.g., millions, hundreds of
millions, billions, etc.) pairs of plausibly correlated events of
different types (e.g., using different social graphs) in different
attacks at the same time.

FIGS. 4B-4D are described in association with the cluster-
ing analysis stage (130, FIG. 1). The propagation stage 120
reveals a collection of pairs of propagated events (e.g., pairs
of events between nodes 2 and 4, between nodes 4 and 5, and
between nodes 4 and 6) from analyzing the event occurred at
node 4. For the discussion herein, nodes 2, 5, and 6 are
referred to as “new node.” In the clustering analysis stage, the
propagation analysis is repeated with each new node until
there is no more new node or another condition (e.g., a num-
ber of nodes have been analyzed, the DAG has grown to a size
greater than a threshold size, etc.).

FIG. 4B shows the results after propagation analysis with
new nodes 2, 5 and 6. The results may be obtained from
parallel processing, serial processing, or any combination
thereof of the following analyses. At any point during an
analysis or before a new analysis, the analysis may reach a
stopping condition, for example, when an event has found at
enough nodes to provide a high certainty that the event is an
attack event.

In this example, a same or similar event occurs at every
node except node 3. Propagation analysis of node 2: Using
social graph 300, FIG. 3 (shown as light-circled nodes con-
nected with broken-line edges with DAG 400B), the nodes
adjacent to node 2 are identified (e.g., nodes 1, 3, 4, and 6).
Node 4 has been analyzed previously and is not considered
here. Applying the above described algorithm for propagation
analysis reveals that events of the same type have occurred at
nodes 1 and 6, at times T,, and T, respectively. With this
information, DAG 400B is expanded to include nodes 1 and 6
(though, node 6 is already included from a previous analysis).
The edge between nodes 1 and 2 is shown pointing to node 2
due to, for example, T,<T,. The edge between nodes 2 and 6
is shown pointing to node 6 due to, for example, T,<T5. DAG
400B shows that the same event may have been propagated to
node 6 from node 4, node 2, or both nodes. In some imple-
mentations, second and subsequent edges pointing to a node
(e.g., node 6) may not be included in a DAG formation. For
example, node 6 may be pointed to, from node 4 or 2, but not
both.

Propagation analysis ofnode 5: The nodes adjacent to node
5 are identified as nodes 3 and 10. Node 3 is eliminated
because no same or similar event occurs there. Applying the
above described algorithm for propagation analysis reveals
that events of the same type have occurred at node 10 at a time
Ts. DAG 400B is expanded to include node 10. The edge
between nodes 5 and 10 is shown pointing to node 10 due to,
for example, T,<Ts.

Propagation analysis ofnode 6: The nodes adjacent to node
6 are identified as nodes 2, 4, 7, and 8, with nodes 2 and 4
having previously considered. Applying the above described
algorithm for propagation analysis reveals that events of the
same type have occurred at nodes 7 and 8, at times T, and T,
respectively. DAG 400B is expanded to include nodes 7 and 8.
The edge between nodes 6 and 7 is shown pointing to node 7
due to, for example, Ts<T,. The edge between nodes 6 and 8
is shown pointing to node 8 due to, for example, T<Ts.
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FIG. 4C shows the results after propagation analysis with
new nodes 1, 7, 8, and 10. Again, the results may be obtained
from parallel and/or serial processing, and analyses may
reach a stopping condition at any point. Propagation analysis
of'node 1 does not yield any new node because adjacent nodes
2,4, and 7 have been previously added to DAG 400C and node
3 does not associate with an event of the same type. In some
implementations, directed edges from node 1 to nodes 4 and
7 may be added due to, for example, T, is earlier than T, and
T,.

Propagation analysis of node 7 yields one new node, node
9, and one new edge pointing from node 7 to node 9 (e.g.,
T,<T,). In some implementations, a directed edge from node
10 to node 7 may be added due to, for example, T<T..

Propagation analysis of node 8 yields no new node. In some
implementations, a directed edge from node 8 to node 9 (e.g.,
Te<Ts) and a directed edge from node 10 to node 8 (e.g.,
Ts<Tg) may be added. Propagation analysis of node 10 yields
no new node and, depending on implementations, may yield
one new directed edge from node 10 to node 9 (e.g., Ts<Ts).
Propagation analysis of node 9, a new node added in the
analysis of node 7, yields no new node and no new directed
edge. After the analysis of node 9, in this example, there is no
more new node to analyze.

FIG. 4D shows an example DAG resulting from clustering
analysis. DAG 400D does not include node 3 and its connect-
ing edges. The above description with respect to FIGS.
4A-4D illustrates how a DAG may be formed conceptually. In
implementations, DAGs associating with different events,
different users, or both may be formed in parallel processing.

FIGS. 5A-D show additional examples of DAGs. Social
graph 510 shows that a user (e.g., one of a-j) may experience
zero, one, two, three, or more events of types X-7Z. X, Y, and
Z are used to denote event types (e.g., similar and/or same
events, as described above, are considered events of the same
type). As described below, an event X (orY or Z) refers to an
event of type X (orY or Z). Two or more events X (orY or Z)
refer to same and/or similar events, which are of type X (or Y
or 7).

Graph 510 shows, for example, user a experiences an event
X; user b experiences three events X, Y, and Z, and user ¢
experiences no event, etc. The edges of graph 510 represent
the propagations of events as described above (e.g., based on
timestamps and/or other factor). For each type of events (e.g.,
X,Y, or Z), one or more DAGs or subgraphs in one or more
clusters may be generated in any manner.

For example, A cluster that includes subgraphs 520-524
(FIG. 5B) may be generated based on social graph 510 for
events X. A cluster that includes subgraph or DAG 530 (FIG.
5C) may be generated based on social graph 510 for events Y.
And a cluster that includes subgraph or DAG 540 (FIG. 5D)
may be generated based on social graph 510 for events 7.
Subgraphs 520-540 are shown over (e.g., on top of) graph 510
for reference.

As an example of generating one or more clusters for a type
of'event X, Y, or Z, a list of (user, event) pairs may be identi-
fied and constructed. The list may be based on a social graph
or other graph (e.g., graph 510). For example, the user-event
pairs for graph 510 (grouped by event types for easy readabil-
ity) are:

(a, X), (b, X), (e, X), (f, X), and (i, X) [list: part 1]

15, Y), (d,Y), £, Y), and (g, Y) [list: part 2]

(b, 7),(d, 2), (e, 2), (£, Z), (b, Z), (i, Z), and (j, Z) [list: part

3]

With each group of events of the same type (e.g., same
and/or related events), such as events X, Y, or Z, one or more
clusters per event X, Y, or Z may be constructed. For example,
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basedto part 1 (above) ofthe generated list, users a, b, e, f, and
iof graph 510 all experience events X (e.g., events of type X).
The clustering stage 130 (FIG. 1) determines that there are
multiple distinct components in the graph 510 with events X
and creates, for example, a cluster of one or more subgraphs
520-524 (FIG. 5B). Subgraph 520 is a DAG with users a, b,
and f. Since user e and i, which also experience events X, are
not connected to any of users a, b, and f, users e and i are in
their own subgraphs or DAGs 522 and 524, respectively. Note
that all nodes in subgraphs 520-524 are nodes in a single
graph 510. A single graph (e.g., graph 510) can include mul-
tiple completely disjoint subgraphs (e.g., 520-524). A graph
(e.g., graph 510) is represented as a collection of edges, and
this collection of edges does not have to be connected in a
cluster (unconnected edges in the cluster are shown as dotted
edges).

Based to part 2 (above) of the generated list, users b, d, f,
and gof'graph 510 all experience events Y and are represented
in DAG 530 (FIG. 5C). Based to part 3 (above) of the gener-
ated list, users b, d-f, and h-j of graph 510 all experience
events 7 and are represented in cluster 540 (FIG. 5D). Each
cluster, which groups one or more subgraphs or DAGs per
event X, Y, or Z, is a distinct subset of the graph 510.

In some implementations, one processing goal may be
constructing a list (event, user_a, user_b) tuples that indicate
user_a and user_b had the event, and user_a had it before
user_b, and user_a and user_b are linked in the social net-
work. Each tuple represents an edge in a DAG. For example,
a list of tuples representing subgraph or DAG 540 may be:

(event Z, b, d), (event Z, d, e), (event Z, e, j), and [Set 1]

(event Z, b, 1), (event Z, f, h), (event Z, h, 1), (event Z, i, j)

[Set 2]

In some implementations, a tuple may include more than
two users. For example, tuples of Set 1 may be represented by
(event Z, b, d, e, j) and tuples of Set 2 may be represented by
(event Z, b, f, h, 1, j)

Tuples representing events X for forming subgraphs 520-
524 and tuples representing events Y for forming subgraph or
DAG 530 may be generated similarly.

Subgraphs 520-540 may be generated using pipeline 100
(FIG. 1) or one or more other processes that detect the events
X, Y, and Z. The pipeline then analyzes the propagations of
the events, such as generating tuples that represent events X
propagate from users a to b then from b to f.

Then the processing in the clustering stage turns the lists of
labeled edges or tuples into multiple DAGs per event that
correspond to the connected components of graph 510. For
example, the clustering stage creates subgraph 520 based on
the tuples that represent events X propagate from usersato b
then from b to f. A post processing stage may be executed to
identify non-attacking events, attacking events and/or poten-
tial attacking event. The algorithm for each stage and/or goal,
which may create intermediary results, can be executed in
parallel on, for example, the entire graph 510, on more than
one graph, on the users, and/or events.

FIG. 5E shows examples of additional directed acyclic
graphs. FIG. 5E is described in association with the post
processing stage (140, FIG. 1). FIG. 5E shows four clusters of
DAGs 550-580. Each cluster, which may include one or more
DAGs, may be formed to analyze an event. Cluster 550 has
nine nodes. Cluster 560 has four. Cluster 570 has 6. And
Cluster 580 has 18 nodes in four subgraphs or DAGs 582-588.

In some analyses, such as for identifying an attack or a
social network abuse, the clarity of an attack or abuse may be
revealed by the size of a DAG or cluster (e.g., cluster 580 with
18 nodes shows a clearer sign of attack or abuse than the other
cluster 560). The bigger the DAG or cluster, the higher the
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probability that the related events associated with it are cor-
related to an attack (e.g., on a social network). False positive
events, which are not related to the social structure, do not
cluster together. Analyses of false positive events, which do
not propagate or do not propagate to too many users, produce
small DAGs or fewer DAGs in clusters.

Sharing of an event (e.g., posting a message) is not suspi-
cious. However, the sharing or the event can be considered
suspicious if the modality in which the event has been propa-
gated is suspicious and/or the group of users propagating the
event is suspicious.

Generated DAGs may be processed in different methods to
answer different questions or provide different answers to the
same questions. For example, DAGs may be processed to
determine a fraction or ratio of public/private posting or shar-
ing. Are event sharing to public users (e.g., broadcast to many
users including those not in social circles) or private users
(e.g., sharing only to a small number of users or to users in
social circles). On a social network, where a large set of users
are provided the options to share posts in public and private,
it is expected that a fraction users use each option. If a large
random group of users is selected, it is statistically unlikely
that all of them have adopted sharing in the same way (e.g.,
public or private) by chance.

Therefore, if a large number of users on a social graph are
sharing to the public, it is a clearer sign that they are acting
according to a deterministic control (e.g., they are all under
the control of the same attacker, account hijacker, or they are
all bots or fake accounts, etc.). In the case of a high or very
high fraction of public shares, it is clear that a spam networks
and hijackers have all the interest to share the message to the
widest possible audience.

In another post processing example, a DAG may be evalu-
ated based on other DAGs (e.g., a large number of other
DAGs, which may be created using parallel or massively
parallel processing methods). For example, the average num-
ber of nodes of the large number of other DAGs is X and the
number of nodes of the DAG under evaluation is greater or
much greater than X, the underlying events used to create the
DAG under evaluation may be concluded as attack events,
likely attack events, suspicious events (e.g., to be reviewed by
an administrator), etc.

The results from post processing may be stored (e.g., in
storage 245, FIG. 1) for further processing and/or reporting.
The results may trigger actions that may be automatic (e.g.,
not human intervention), semi-automatic, or manual (e.g.,
performed by an administrator). For example, the size of a
generated DAG is at least a threshold size (e.g., five nodes),
the events occurred nodes may be remove or mitigated (e.g.,
removing/deleting five posts of the same content at those
nodes). The top results that do not trigger automatic actions
may be provided to social network administrators for further
analysis and/or actions.

FIG. 6 shows an example process according to some imple-
mentations. Process 600 may start with detecting an event
associated with a user at block 605. For example, the user
received a spam email message or an unsolicited post on a
social network. At block 610, a system implementing process
600 may determine that the user is associated with a node on
asocial graph. For example, the user is connected with one or
more social connections (e.g., has an address book with the
online contact information of at least one other users or is on
a social network). The increase confidence of an event being
an malicious event or detect an online attack, a directed acy-
clic graph (DAG) structure may be employed.

At block 615, a node corresponding to the node on the
social graph may be added to a DAG. The added node on the
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DAG may be referred to as a current node or by another label.
A time (e.g., time of occurrence) associated with the detected
event (block 605) may be determined at any point during
process 600 before the time is needed used in the process. At
block 620, one or more nodes adjacent to the node on the
social graph are determined.

At block 625, for each of the adjacent node that has asso-
ciated with it an occurrence of an event the same as or related/
similar to the event detected at block 650: add a node (referred
to as a new node) to the DAG corresponding to the adjacent
node on the social graph and add a directed edge between the
newly added node and the current node. The direction of the
directed edge is pointed to the node associated with a later
timestamp. In some implementations, the direction of the
edge may be reverse (e.g., point to the node associated with an
earlier timestamp). At block 625, for each of the adjacent
node that does not have associated with it an occurrence of an
event the same as or related/similar to the event detected at
block 650, the adjacent node is dropped from processing
(e.g., not considered).

If process 600 reaches a stopping condition as described
above, the process stop and the DAG is stored at block 630. If
a stopping condition has not been reached, the process con-
tinues to block 640, which iterates each adjacent node pro-
cessed above at block 625 through the operations of blocks
620 and 625.

Process 600 may be implemented in a parallel or massively
parallel computing environment, where one or more blocks
shown may be executed in parallel in different processes or
systems (e.g., executed concurrently or simultaneously). In
some examples, process 600 may be implemented with dif-
ferent, fewer, or more blocks. Process 600 may be imple-
mented as computer executable instructions, which can be
stored on a medium, loaded onto one or more processors of
one or more computing devices, and executed as a computer-
implemented method.

FIG. 7 shows an example computing environment with an
example computing device suitable for use in some example
implementations. Computing device 705 in computing envi-
ronment 700 can include one or more processing units, cores,
or processors 710, memory 715 (e.g., RAM, ROM, and/or the
like), internal storage 720 (e.g., magnetic, optical, solid state
storage, and/or organic), and/or 1/O interface 725, any of
which can be coupled on a communication mechanism or bus
730 for communicating information or embedded in the com-
puting device 705.

Computing device 705 can be communicatively coupled to
input/user interface 735 and output device/interface 740.
Either one or both of input/user interface 735 and output
device/interface 740 can be a wired or wireless interface and
can be detachable. Input/user interface 735 may include any
device, component, sensor, or interface, physical or virtual,
that can be used to provide input (e.g., buttons, touch-screen
interface, keyboard, a pointing/cursor control, microphone,
camera, braille, motion sensor, optical reader, and/or the
like). Output device/interface 740 may include a display,
television, monitor, printer, speaker, braille, or the like. In
some example implementations, input/user interface 735 and
output device/interface 740 can be embedded with or physi-
cally coupled to the computing device 705. In other example
implementations, other computing devices may function as or
provide the functions of input/user interface 735 and output
device/interface 740 for a computing device 605.

Examples of computing device 705 may include, but are
not limited to, highly mobile devices (e.g., smartphones,
devices in vehicles and other machines, devices carried by
humans and animals, and the like), mobile devices (e.g.,
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tablets, notebooks, laptops, personal computers, portable
televisions, radios, and the like), and devices not designed for
mobility (e.g., desktop computers, other computers, informa-
tion kiosks, televisions with one or more processors embed-
ded therein and/or coupled thereto, radios, and the like).

Computing device 705 can be communicatively coupled
(e.g., via I/O interface 725) to external storage 745 and net-
work 750 for communicating with any number of networked
components, devices, and systems, including one or more
computing devices of the same or different configuration.
Computing device 705 or any connected computing device
can be functioning as, providing services of, or referred to as
a server, client, thin server, general machine, special-purpose
machine, or another label.

1/O interface 725 can include, but is not limited to, wired
and/or wireless interfaces using any communication or /O
protocols or standards (e.g., Ethernet, 802.11x, Universal
System Bus, WiMax, modem, a cellular network protocol,
and the like) for communicating information to and/or from at
least all of the connected components, devices, and network
in computing environment 700. Network 750 can be any
network or combination of networks (e.g., the Internet, local
area network, wide area network, a telephonic network, a
cellular network, satellite network, and the like).

Computing device 705 can use and/or communicate using
computer-usable or computer-readable media, including
transitory media and non-transitory media. Transitory media
include transmission media (e.g., metal cables, fiber optics),
signals, carrier waves, and the like. Non-transitory media
include magnetic media (e.g., disks and tapes), optical media
(e.g., CD ROM, digital video disks, Blu-ray disks), solid state
media (e.g., RAM, ROM, flash memory, solid-state storage),
and other non-volatile storage or memory.

Computing device 705 can be used to implement tech-
niques, methods, applications, processes, or computer-ex-
ecutable instructions in some example computing environ-
ments. Computer-executable instructions can be retrieved
from transitory media, and stored on and retrieved from non-
transitory media. The executable instructions can originate
from one or more of any programming, scripting, and
machine languages (e.g., C, C++, C#, Java, Visual Basic,
Python, Perl, JavaScript, and others).

Processor(s) 710 can execute under any operating system
(OS) (not shown), in a native or virtual environment. One or
more applications can be deployed that include logic unit 760,
application programming interface (API) unit 765, input unit
770, output unit 775, event detection and propagation analy-
sis 780, clustering analysis 785, post processing 790, and
inter-unit communication mechanism 795 for the different
units to communicate with each other, with the OS, and with
other applications (not shown). For example, event detection
and propagation analysis 780, clustering analysis 785, and
post processing 790 may implement one or more processes
shown or described in FIGS. 1-6. The described units and
elements can be varied in design, function, configuration, or
implementation and are not limited to the descriptions pro-
vided.

In some example implementations, when information or an
execution instruction is received by API unit 765, it may be
communicated to one or more other units (e.g., logic unit 760,
input unit 770, output unit 775, event detection and propaga-
tion analysis 780, clustering analysis 785, and post process-
ing 790). For example, event detection and propagation
analysis 780 may identify or detect an event (e.g., receive a
report of an event through input unit 770) and perform propa-
gation analysis on itas described above. Depending onimple-
mentations, the propagation analysis may be enough to pro-



US 9,183,387 Bl

13

vide a level of confidence that the event is an attack event. In
implementations that call for more analysis, the results from
event detection and propagation analysis 780 are passed to
clustering analysis 785 to further analyze the detected event,
as described above. After clustering analysis 785 reaches a
stopping condition, which may be based on a threshold, the
end social graph (e.g., no more new node), and/or another
condition, the results are processed by post processing 790 to
rank and/or identify the attack events or likely attack events.
Actions may be taken automatically on the identified attack-
ing events (e.g., removing the events). For the likely attack
events, they may be routed via the API unit 765 and/or output
unit 775 for additional analysis (e.g., analysis by an admin-
istrator).

In some instances, logic unit 760 may be configured to
control the information flow among the units and direct the
services provided by API unit 765, input unit 770, output unit
775, event detection and propagation analysis 780, clustering
analysis 785, and post processing 790 in some example
implementations described above. For example, the flow of
one or more processes or implementations may be controlled
by logic unit 760 alone or in conjunction with API unit 765.

In situations in which the systems discussed here collect
personal information about users, or may make use of per-
sonal information, the users may be provided with an oppor-
tunity to control whether programs or features collect user
information (e.g., information about a user’s social network,
social actions or activities, profession, a user’s preferences, or
auser’s current location), or to control whether and/or how to
receive content from the content server that may be more
relevant to the user. In addition, certain data may be treated in
one or more ways before it is stored or used, so that personally
identifiable information is removed. For example, a user’s
identity may be treated so that no personally identifiable
information can be determined for the user, or a user’s geo-
graphic location may be generalized where location informa-
tion is obtained (such as to a city, ZIP code, or state level), so
that a particular location of a user cannot be determined.
Thus, the user may have control over how information is
collected about the user and used by a content server.

Although a few example implementations have been
shown and described, these example implementations are
provided to convey the subject matter described herein to
people who are familiar with this field. It should be under-
stood that the subject matter described herein may be imple-
mented in various forms without being limited to the
described example implementations. The subject matter
described herein can be practiced without those specifically
defined or described matters or with other or different ele-
ments or matters not described. It will be appreciated by those
familiar with this field that changes may be made in these
example implementations without departing from the subject
matter described herein as defined in the appended claims and
their equivalents.

What is claimed is:

1. A computer-implemented method, comprising:

detecting a plurality of events based on an analysis ofa data

stream by identifying the plurality of events as being
associated with users on a social graph, the social graph
comprising a plurality of social graph nodes and social
graph edges and each of the plurality of events having a
type, to receive one or more indicators of an online
attack;

analyzing propagation ofthe plurality of events by, for each

type of the plurality of events, generating at least one
directed acyclic graph (DAG) comprising a plurality of
DAG nodes and DAG edges, where each DAG node on
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the DAG represents a corresponding social graph node
on the social graph where a subset of events of the
plurality of events having a particular type occur and
each of the DAG edges of the DAG represents a propa-
gation of each event of the subset of events of the par-
ticular type from a first social graph node to a second
social graph node, and assessing a confidence level that
the plurality of events are online attack events;

performing a cluster analysis comprising analysis of pairs
of the plurality of events that have been graphed on the
DAG as having been propagated, wherein the cluster
analysis is repeated for each type of the plurality of
events and one or more timings of the plurality of events;
and

providing an updated confidence level associated with the

plurality of events being the online attack events based
on the cluster analysis,

wherein an identity of an online attacker associated with

the online attack events is further associated with the
social graph.

2. The method of claim 1, wherein the propagation of each
event of the subset of events of the particular type from the
first social graph node to the second social graph node is
based on each event of the subset of events of the particular
type occurring at a time T1 at the first social graph node, each
event of the subset of events of the particular type occurring at
a time T2 at the second social graph node, and T1 is earlier
than T2.

3. The method of claim 1, wherein the propagation of each
event of the subset of events of the particular type from the
first social graph node to the second social graph node com-
prises propagation of a first event of the subset of events of the
particular type occurring at the first social graph node to a
second event of the subset of events of the particular type
occurring at the second social graph node, and content of the
first event is related to content of the second event.

4. The method of claim 1, wherein one of the plurality of
events comprises a posting of information on a social net-
work.

5. The method of claim 1, further comprising:

determining a cluster of the at least one DAG; and

determining a score associated with the cluster, wherein
the score is based on a size of the cluster, which is a sum
of a number of the DAG nodes of the at least one DAG.

6. The method of claim 1, further comprising: performing
the cluster analysis concurrently on the pairs of the plurality
of events that have been propagated.

7. The method of claim 1, wherein the generating the DAG
comprises determining whether the plurality of events are an
online attack events, determining a degree of the online attack
events, and determining a direction of the online attack
events.

8. At least one computing device comprising non-transi-
tory storage and a hardware processor configured to perform:

detecting a plurality of events based on an analysis of'a data

stream by identifying the plurality of events as being
associated with users on a social graph, the social graph
comprising a plurality of social graph nodes and social
graph edges and each of the plurality of events having a
type, to receive one or more indicators of an online
attack;

analyzing propagation of the plurality of events by, for each

type of the plurality of events, generating at least one
directed acyclic graph (DAG) comprising a plurality of
DAG nodes and DAG edges, where each DAG node on
the DAG represents a corresponding social graph node
on the social graph where a subset of events of the
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plurality of events having a particular type occur and
each of the DAG edges of the DAG represents a propa-
gation of each event of the subset of events of the par-
ticular type from a first social graph node to a second
social graph node, and assessing a confidence level that
the plurality of events are online attack events;

performing a cluster analysis comprising analysis of pairs
of the plurality of events that have been graphed on the
DAG as having been propagated, wherein the cluster
analysis is repeated for each type of the plurality of
events and one or more timings of the plurality of events;
and

providing an updated confidence level associated with the
plurality of events being the online attack events based
on the cluster analysis,

wherein an identity of an online attacker associated with
the online attack events is further associated with the
social graph.

9. The at least one computing device of claim 8, wherein
the propagation of each event of the subset of events of the
particular type from the first social graph node to the second
social graph node is based on each event of the subset of
events of the particular type occurring at a time T1 at the first
social graph node, each event of the subset of events of the
particular type occurring at a time T2 at the second social
graph node, and T1 is earlier than T2.

10. The at least one computing device of claim 8, wherein
the propagation of each event of the subset of events of the
particular type from the first social graph node to the second
social graph node comprises propagation of a first event of the
subset of events of the particular type occurring at the first
social graph node to a second event of the subset of events of
the particular type occurring at the second social graph node,
and content of the first event is related to content of the second
event.

11. The at least one computing device of claim 8, further
comprising:

determining a cluster of the at least one DAG; and

determining a score associated with the cluster.

12. The at least one computing device of claim 11, wherein
the score is based on a size of the cluster, which is a sum of a
number of the DAG nodes of the at least one DAG.

13. A non-transitory computer readable medium having
stored therein computer executable instructions for:

(a) detecting an event of a plurality of events that is asso-
ciated with a first user, each of the plurality of events
having a type;

(b) determining that the first user is associated with a first
social graph node on a social graph;

(c) adding a directed acyclic graph (DAG) node to a DAG
corresponding to the first social graph node on the social
graph;

(d) assigning the DAG node on the DAG as a current node;

(e) determining that the event occurs at a time T1;
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() identifying at least one or more second users associated
with at least one second social graph node adjacent to the
first social graph node on the social graph corresponding
with the current node;

(g) determining if the one or more second users are asso-
ciated with an occurrence of another event having a same
type as the event associated with the first user and for
each of the determined one or more second users:

(g1) adding a second DAG node to the DAG correspond-
ing to the at least one second social graph node on the
social graph, the added second DAG node being con-
sidered as one new node;

(g2) determining that the another event having the same
type as the event associated with the first user occurs
at a time T2; and

(g3) adding a directed edge between the current node
and the one new node to indicate propagation of the
another event with the directed edge pointing to the
current node if T1 is later than T2 or pointing to the
one new node if T2 is later than T1;

(h) storing the DAG;

(1) assessing a confidence level that the plurality of events
are online attack events based on the DAG;

(j) performing a cluster analysis comprising analysis of
pairs of the plurality of events that have been graphed on
the DAG as having been propagated, wherein the cluster
analysis is repeated for each type of the plurality of
events and one or more timings of the plurality of events;
and

(k) providing an updated confidence level associated with
the plurality of events being the online attack events
based on the cluster analysis.

14. The computer readable medium of claim 13, further

comprising:

for the one new node:

assigning the one new node as the current node;

assigning a current value of T2 associated with the one new
node as anew value of T1, and setting a new value of T2;
and

repeating the operations (1), (g), (g1), (g2), and (g3);

wherein each of the operations (f), (g), (g1), (g2), and (g3)
is terminated when a stopping condition is reached.

15. The computer readable medium of claim 13, wherein
the event associated with the first user comprises a posting of
information on a social network.

16. The computer readable medium of claim 13, wherein
content of the another event is related to content of the event
associated with the first user.

17. The computer readable medium of claim 13, further
comprising determining a score based on a size of the DAG.

18. The computer readable medium of claim 13, further
comprising determining a score based on comparing at least
one aspect of the DAG with the at least one aspect of at least
one other DAG.



