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Abstract
We study the problem of learning probabilistic mod-
els for permutations, where the order between highly
ranked items in the observed permutations is more reli-
able (i.e., consistent in different rankings) than the order
between lower ranked items, a typical phenomena ob-
served in many applications such as web search results
and product ranking. We introduce and study a variant
of the Mallows model where the distribution is a func-
tion of the widely used Average-Precision (AP) Corre-
lation statistic, instead of the standard Kendall’s tau dis-
tance. We present a generative model for constructing
samples from this distribution and prove useful proper-
ties of that distribution. Using these properties we de-
velop an efficient algorithm that provably computes an
asymptotically unbiased estimate of the center permuta-
tion, and a faster algorithm that learns with high proba-
bility the hidden central permutation for a wide range of
the parameters of the model. We complement our theo-
retical analysis with extensive experiments showing that
unsupervised methods based on our model can precisely
identify ground-truth clusters of rankings in real-world
data. In particular, when compared to the Kendall’s tau
based methods, our methods are less affected by noise
in low-rank items.

1 Introduction
Probabilistic models of ranking data have been studied
extensively in statistics (Mallows 1957), machine learn-
ing (Awasthi et al. 2014) and theoretical computer sci-
ence (Braverman and Mossel 2008; Chierichetti et al. 2014).
Applications of ranking models include understanding user
preferences in electoral systems, ordering web search re-
sults, aggregating crowd-sourcing data, and optimizing rec-
ommendation systems results (Vigna 2015; Saari 2006;
Dwork et al. 2001; Sorz et al. 2015; Brian 2008; Yilmaz,
Aslam, and Robertson 2008; Melucci 2007).

Most of the analytic work in this area has focused on the
Mallows model (1957) which defines a probability distribu-
tion over a set of permutations of n elements given a fixed
center permutation π (the ground truth), and a dispersion
parameter β > 0. The probability of a permutation σ in
Mallows model is PrM(β,π)(σ) = N−1

β exp(−βdK(π, σ)),
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where dK(π, σ) is the Kendall’s tau distance between π and
σ, and Nβ is a normalization factor independent of σ (see
Section 3 for more details). Since the Kendall’s tau distance
simply counts the number of pairs of items whose order is
inverted in σ with respect to their order in π, a permutation
with inversions of elements occupying positions towards the
end of the ranking has the same probability as a permutation
with the same number of inverted pairs near the top of the
ranking.

In many practical applications, such as web search rank-
ing, voter preferences surveys, consumer evaluation systems
and recommendation systems we expect the input samples
to provide a more reliable order for items at the top of the
ranking than for “less important” items at the bottom of
the ranking (Melucci 2007; Vigna 2015; Yilmaz, Aslam,
and Robertson 2008). The limitation of the Kendall’s tau
distance and the associated Mallows model, when applied
to such data has been pointed out in a number of recent
works (Vigna 2015; Yilmaz, Aslam, and Robertson 2008;
Kumar and Vassilvitskii 2010). Note that the Spearman’s
footrule distance (Spearman 1904), another widely used
statistic, suffers from the same problem.

In this work we address the limitation of the standard
Mallows distribution by proposing an alternative exponen-
tial distribution of permutations,MAP (β, π), in which the
Kendall’s tau distance of the Mallows distribution is re-
placed by a new distance based on the widely used Av-
erage Precision (AP) correlation statistic (Yilmaz, Aslam,
and Robertson 2008). The AP statistic (and hence the AP
model) takes into account not only the number of miss-
ranked pairs but also the locations (and hence the impor-
tance) of the miss-placed pairs in the ranking. Let [n] be the
set of natural numbers {1, . . . , n}, and let Sn be the set of
all permutations over [n]. Given a fixed center permutation
π ∈ Sn and a dispersion parameter β > 0, the probabil-
ity associated with a permutation σ ∈ Sn according to the
new model is PrMAP(β,π)(σ) = Z−1

β exp(−βdAP (π, σ)),

where dAP (π, σ) is the AP-distance between π and σ and
Zβ is a normalization factor independent of σ (see Section 3
for more details). To the best of our knowledge, no work has
addressed the problem of modeling permutations with prov-
able guarantees subject to such properties.

We now summarize the main contributions of this work:
• We introduce a novel variant of the standard Mallows



model based on the more nuanced AP statistic.
• We introduce a generative process for this probability dis-

tribution. This process, besides defining an efficient algo-
rithm for sampling permutations from the distribution, is a
useful tool in establishing formal properties of our model.

• We provide bounds on the probability of swapping ele-
ments and use these bounds to quantify the number of
samples required for learning the parameters of the model.

• We design efficient algorithms that given O(log n/(nβ))
samples learn the central permutation with high proba-
bility for β = Ω(1/n). We also show an alternative al-
gorithm that efficiently computes an asymptotically unbi-
ased and consistent estimator of the central permutation
for any β > 0.

• We experimentally evaluate our model and algorithms
with both synthetic and real-world data. We show ex-
perimentally the accuracy of the estimators in the recon-
struction of the hidden permutation with a limited num-
ber of samples. We also show with real data that unsu-
pervised methods based on our model can precisely (and
efficiently) identify ground-truth clusters of rankings with
tens of thousand of elements. Moreover we show that our
method is less affected by noise in the lowest positions of
the ranking, which is more likely to occur (Vigna 2015),
than the Kendall-based ones. Finally we show that sim-
ple supervised classification algorithms based on the AP
statistic outperform classifications based on the Kendall-
based distance measure.
The new MAP (β, π) model is significantly more chal-

lenging for mathematical analysis than the Mallows model.
TheMAP (β, π) model does not have many of the simpli-
fying features used in the analysis of Mallows model, such
as translational invariant of the distribution (Chierichetti et
al. 2014). Nevertheless, as we show in this work, the model
remains sufficiently mathematically tractable to derive non-
trivial theoretical results. Furthermore, while many of the
results for the Mallows model require a constant β, our anal-
ysis applies to β = β(n) that is decreasing in n.

The paper is structured as follows. Section 2 reviews part
of the literature which is relevant for our problem. Section 3
formally defines theMAP (β, π) model and provides some
intuition on the behavior of the AP model. Section 4 de-
fines a generative process for the distribution that will be
pivotal in the analysis of our model. Section 5 presents the
in depth study the mathematical properties of our model and
the learning algorithms designed on this study. Section 6
presents an experimental evaluation of our method on real
and synthetic data. Finally, Section 7 draws conclusions and
hints at possible future directions stemming from our work.

For lack of space, most proofs are omitted from this pa-
per. All proofs are available in the full version of the pa-
per (De Stefani et al. 2015).

2 Related Work
Ranking problems have been studied extensively since at
least the 18th century works of Borda and Condorcet on so-
cial choice theory (Brian 2008; Saari 2006). We discuss here

only the most relevant works derived from Mallow’s original
work.

Properties of the Mallows model (1957) were studied
in (Diaconis and Ram 2000; Fligner and Verducci 1988).
Tail bounds on the displacement of an element were stud-
ied in (Braverman and Mossel 2009; Bhatnagar and Peled
2014). Reconstructing the hidden central permutation was
studied in (Braverman and Mossel 2009; Meila et al. 2012;
Chierichetti et al. 2014; Lu and Boutilier 2011). Find-
ing the maximum likelihood permutation is equivalent to
the well known rank aggregation problem which is NP-
hard (Bartholdi III, Tovey, and Trick 1989) and has a
polynomial-time approximation scheme (Kenyon-Mathieu
and Schudy 2007). Several heuristics were introduced in
order to solve this problem (Meila et al. 2012; Schapire
and Singer 1998) with no provable guarantees. The prob-
lem of learning a mixture of Mallows models was stud-
ied in (Awasthi et al. 2014; Chierichetti et al. 2014). The
Mallows model has also been extended in various ways by
generalizing the Kendall’s tau distance in order to weigh
the number of inversions with respect to previously defined
parameters for each element (Fligner and Verducci 1986;
1988). In the Recursive Inversion Model (Meek and Meila
2014) different weights are assigned to the inversions of el-
ements, requiring a priori specification of n − 1 weights. A
priori assigning such weights is not easy. In contrast, the AP
model we consider gradually and coherently weighs the ele-
ments based on their positions.

Recent work (Qin, Geng, and Liu 2010) generalizes the
Mallows model to other distances in which the maximum
likelihood can be efficiently computed. Shieh (1998) pro-
posed a weighting scheme for Kendall’s tau distance where
the weight of errors depends on the ranks of the inverted
items. Kumar and Vassilvitskii (2010) later extended Shieh’s
model defining an even more sophisticated scheme that takes
into account positions of the items, weights, and their sim-
ilarity. Various works (Fagin, Kumar, and Sivakumar 2003;
Haveliwala et al. 2002) addressed the issue of assigning dif-
ferent weights to various elements by restricting the compu-
tation of some statistics only on specific parts of the ranking.

The AP correlation statistic, which is the focus of this
work, was introduced by Yilmaz et al. (Yilmaz, Aslam, and
Robertson 2008; Yilmaz and Aslam 2006). Since its intro-
duction, AP correlation has been widely used in the litera-
ture (for instance (Vigna 2015; Sakai 2012; Schubert et al.
2012) and see the references of these papers). Recently (Vi-
gna 2015) generalized the AP correlation and other met-
rics to handle ties and other ways to weighting inversions.
We believe that our approach could be adapted to the cor-
responding extension of the AP-distance. To the best of our
knowledge no prior work has addressed the problem of prov-
ably reconstructing the center permutation of a generalized
Mallows model using AP distance or similar more nuanced
measures.

3 The AP model
For π ∈ Sn let πi be the i-th element in the order defined
by π, and π(i) is the position of i ∈ [n] in π. We use
the notation i <π j to indicate that π ranks i before j, or



equivalently, that π(i) < π(j). Finally we use π[t] to de-
note the prefix of the t highest ranked elements in π, i.e.
π[t] = (π1, . . . , πt).

Our new model uses the following AP distance of a per-
mutation σ from permutation π:

dAP (π, σ) =

n−1∑
i=1

n∑
j=i+1

Eij
n

2(j − 1)
,

where Eij = 1 iff item πi is ranked after item πj in permu-
tation σ, and Eij = 0 otherwise. Note that the AP-distance
dAP (π, σ) is defined with respect to a ground truth π and
it is therefore not symmetric. Notice that the Kendall’s tau
distance dK(π, σ) can be expressed in the same form by
assigning cost 1 (instead of n

2(j−1) ) for each inversion, i.e.

dK(π, σ) =
∑n−1
i=1

∑n
j=i+1Eij .

The AP-distance has the same range and extreme points
as the Kendall’s tau distance: 0 ≤ dAP (π, σ) ≤

(
n
2

)
,

dAP (π, σ) = 0 iff π = σ, and dAP (π, σ) =
(
n
2

)
iff σ is

obtained by reversing π. However, the AP-distance assigns
weights to inverted pairs in σ which depend on the locations
of the items in π. More specifically, the cost assigned to in-
version of elements (πi, πj) for i < j is n

2(j−1) . The cost
assigned by AP is strictly higher than the one given by tau
distance (always 1) for elements in the first half of the rank-
ing, i.e. for j < n

2 +1 and strictly lower than 1 for j > n
2 +1.

Given this distance function we define the AP model
MAP (β, π):

Definition 1 (AP model). The AP model is a probability dis-
tribution over Sn. Given a fixed center permutation π and a
dispersion parameter β > 0, the probability of a permuta-
tion σ ∈ Sn is

Pr
MAP(β,π)

(σ) = Z−1
β exp(−βdAP (π, σ)), (1)

where Zβ =
∑
σ∈Sn

exp (−βdAP (π, σ)) is a normaliza-
tion coefficient independent of σ.

Notice that our model differs from the traditional Mal-
lows model M (β, π) only in the use of the AP distance
dAP (π, σ) instead of the Kendall’s tau distance dK(π, σ).

Before studying the details of the model we show that,
as in the traditional Mallows model, finding the maximum
likelihood center permutation for an arbitrary multi-set of
permutations is NP-hard.

More precisely, we define the AP-ML problem as follows.
Given an arbitrary multiset P of elements of Sn (and β > 0)
find the permutation πAP ∈ Sn such that:

πAP = arg max
π∈Sn

∏
σ∈P

Pr
MAP(β,π)

(σ)

Theorem 1. The AP-ML problem is NP-hard

Proof available in the extended version. The result follows
by reduction from the Kendall-ML problem, which is NP-
Hard (Braverman and Mossel 2008).

Note that for any β > 0 we have that a permutation π
which is a solution of the AP-ML problem for P is the one

that minimizes the average AP distance to the multi-set P ,
that is also NP-hard to find.

We stress that the previous NP-hardness result holds for
arbitrary multi-sets (i.e. not generated by the AP model dis-
tribution). As we will see in the rest of the paper, when the
permutations are generated according to the AP model dis-
tribution, it is possible to learn important properties of the
model in polynomial time.

4 Generative Process forMAP (β, π)
We give a randomized algorithm for constructing a permu-
tation σ ∈ Sn according to theMAP (β, π) model. The al-
gorithm is based on the one presented in (Diaconis and Ram
2000) and provides useful insight on the probability distri-
bution for the AP model. Recall that π[i] refers to the prefix
of length i of the permutation π.

The MAP (β, π) Generative Process: Let π =
π1, π2, . . . , πn be the central permutation. We generate a
random permutation σ in n steps. At step i we produce a
permutation σi in the following way:

1. σ1 = (π1);
2. for i = 2 to n do:

(a) choose a random value 0 ≤ r ≤ i− 1 according to the
probability

Pr(r = j) =
1

Bi
exp

(
−βn

2

j

i− 1

)
,

where

Bi =

i−1∑
j=0

exp

(
−βn

2

j

i− 1

)
.

(b) Generate a permutation σi from σi−1 by placing item
πi after item σi−1

i−1−r. i.e., for 1 ≤ t ≤ i−1−r we have
σit = σi−1

t , then σii−r = πi, and for i− r + 1 ≤ t ≤ i

we have σit = σi−1
t−1. If r = i− 1, we have σi1 = πi.

(c) Finally output σ = σn.
The proof of the next result is in the extended version:

Theorem 2. For i = 1, . . . , n, the permutation σi gener-
ated by the MAP (β, π) Generative Process has distribu-
tionMAP

(
n
i β, π[i]

)
. In particular the output permutation

σ = σn has distributionMAP (β, π).

The normalization coefficient Zβ of the model is given
by:
Lemma 1. For n = 1, Zβ = 1. Otherwise, for n > 1,

Zβ =

n∏
i=2

exp
(
−βn2

i
i−1

)
− 1

exp
(
−βn2

1
i−1

)
− 1

.

5 Reconstructing the Center Permutation in
the AP model

In this section we study the problem of reconstructing the
hidden center permutation given a set of samples drawn from
the AP model.



Problem 1 (Permutation Reconstruction in the AP model).
Given T i.i.d. samples obtained fromMAP (β, π) with un-
known parameters β > 0 and π ∈ Sn, compute a best esti-
mate for the center permutation π.

A minimum requirement for solving the problem is β >
0, since for β = 0, the distribution is uniform over Sn and
all centers define the same distribution.

Our first goal is to show that with a sufficient number of
samples we can reconstruct the center permutation for any
β > 0, even for β = β(n)

n→∞−→ 0. To achieve this goal
we design a rank-based algorithm that for any set of sam-
ples outputs a permutation that is an unbiased estimate of the
central permutation. As we increase the number of samples,
the sequence of estimates converges; thus the estimate must
be consistent and therefore converges to the central permu-
tation.

For a more practical result we present a comparison-based
algorithm that for any β > 2 ln(2)

n , and given O(log(n)) in-
dependent samples from the distribution, computes w.h.p.1
the correct center permutation.

5.1 Rank-based algorithm for β > 0

Theorem 3 (Probability of a swap between elements adja-
cent in π). For any β ≥ 0 and 1 ≤ i ≤ n− 1,

Pr (σ(πi+1) < σ(πi)) ≤ 1/2

with equality iff β = 0.

Note that the above result applies only for adjacent items
in the permutation π, and only with probability≤ 1/2. Thus,
the result does not imply a total order. Recall that in gen-
eral, Pr(X ≥ Y ) > 1/2 does not imply E[X] ≥ E[Y ] or
vice versa. Nevertheless, in this model we can prove a to-
tal order on the expected position of items in the observed
permutations. In the following, let σ(πi) denote the position
of the element πi in a permutation σ ∼ MAP (π, β). Note
the distinction with σi which denotes the element at the i-th
position in σ instead.

Theorem 4. For any β > 0 and 1 ≤ i ≤ n− 1,

E[σ(πi)] < E[σ(πi+1)].

We will now describe a rank-based algorithm for the per-
mutation reconstruction problem which takes as input a sam-
ple σ1, . . . , σs of s independent random permutations from
MAP (β, π) and computes an estimate πRank for the cen-
tral permutation π.

For each element π1, . . . , πn we compute the respective
average rank σ(πi) = 1

s

∑s
j=1 σ

j(πi). We then build the
permutation πRank by ordering the elements πi according to
their average ranks σ(πi). The running time of the proposed
algorithm isO(sn+n log n) whereO(sn) time is needed to
computed the average rank for each element, andO(n log n)
time is required by the sorting algorithm. Since the average
ranks converge to their expectations we have:

1We say that an event happens with high probability (w.h.p.) if
it happens with probability ≥ 1− 1

n
.

Theorem 5. The ranking πRank is an asymptotically unbi-
ased and consistent estimator.

Since the ranks are integers we can conclude that:

Corollary 1. For any value of β > 0, and with a sufficient
number of samples, the reconstructed permutation πRank
equals the central ranking π .

5.2 Comparison-Based algorithm for β ∈ Ω( 1
n)

We now present an efficient algorithm for β > c ln(2)
n , c > 2

independent of n, which relies on the following result:

Theorem 6. Let σ be obtained fromMAP (β, π), with π ∈
Sn and β > 0. Given a pair (i, k) with 1 ≤ i < n and
0 ≤ k < n − i, let Pr (Si,i+k+1) be the probability of two
elements occupying the positions i and i + k + 1 in π are
swapped in σ.

Pr (Si,i+k+1) ≤ exp

(
−βn

2

)
exp

(
−βn

2

i

i+ k

)
.

For our choice of β, for any pair (i, k), Pr (Si,i+k+1) ≤
q < 1/2.

With O(dlog n/(βn)e) samples we can run any
O(n log n) sorting algorithm, repeating every comparisons
O(dlog n/(βn)e) times to guarantee that with probability
1 − O(1/n) all pairs are placed in the right order. The total
running time of this algorithm is O(n log n log n/(βn)).
Note that with a careful analysis of the dependencies
between the comparisons one can apply the noisy sorting
algorithm in (Feige et al. 1994) to obtain an O(n log n)
algorithm.

6 Experimental evaluation
We used both synthetic and real-world data to evaluate our
algorithms and to explore the use of the AP distance as an
alternative to the standard Kendall’s tau distance in learning
a true order from noisy sample data. We used two real-world
datasets. First, we obtained a new dataset with long permu-
tations and ground truth information, by automatically rank-
ing Wikipedia pages with multiple ground-truth classes (a
similar approach was used in (Pilehvar, Jurgens, and Nav-
igli 2013) for linguistic graphs). We believe that our prac-
tical and efficient approach for generating classified permu-
tations datasets will be useful in other studies. Second, we
used publicly available data from human cancer studies with
permutations with binary classifications.

We implemented the algorithms in C++. Each run used a
single core and less than 4GB of RAM.2

6.1 Reconstructing the Hidden Permutation
In this experiment, we generated, using the algorithm de-
fined in Section 4, a set P of i.i.d. permutations of size
n = 100 from the MAP (β, π) model with different set-
tings of β and size of |P |.3 We obtained an estimate π∗ of

2All our algorithms are easily parallelizable, if needed, but we
did not pursue this direction.

3W.l.o.g., we set π to the identity permutation (1, . . . , 100).



the central permutation π by applying our estimation algo-
rithm to the set P . We then tested the quality of the estimate
π∗ using two measures: Correctness (Corr.), the fraction of
correctly ranked pairs i, j ∈ [n] s.t. π∗(πi) < π∗(πj) for
i < j; Precision at 10 (P. at 10), the fraction of elements
in the first 10 positions of π∗ that are in {π1, ..π10}. Both
of the measures range from 0 (π∗ is the inverse of π) to 1
(π∗ = π).

The results are shown in Figure 1(a) for the algorithm in
Section 5.2 and are consistent with our theoretical analysis
(we report averages over 300 runs of the experiment). Re-
sults for the Rank-based algorithm in Section 5.1 are very
close and thus omitted. We observe that for both algorithms
fewer samples are required to correctly reconstruct π as β
grows, as expected. Notice that the algorithms achieve high
precision even with few samples for β > 1

n . For the more
challenging settings (e.g., β = 0.01) we observe fairly high
precision with more samples. Notice also the high precision
in the reconstruction of the first (and most important) posi-
tions of the central ranking even in the higher variance ex-
periment. This confirms our theoretical insight discussed in
Section 5 according to which the AP model has lower vari-
ance then the Mallows model using Kendall’s tau distance in
the first positions of the ranking.

6.2 Experiments with real-data
Clustering We now assess the ability of a simple unsuper-
vised clustering algorithm based on k-means, and equipped
with our AP model estimators, to correctly cluster permuta-
tions from real-data for which we possess ground truth la-
beling. We address this problem in the context of web-pages
rankings. In this context ranking correctly web-pages as well
classifying pages in ground-truth categories is key to provide
high quality recommendations.

Numerous algorithms, like the PageRank, are known to
induce rankings over web-pages. In this experiment we use
the well known Personalized PageRank (Haveliwala 2002)
random walk with different seed pages to produce random
permutations with ground-truth classes. Note that the AP
model finds a natural application in this context as the first
results in the permutations are more meaningful than the last
ones.

More precisely, we used a snapshot of the entire En-
glish Wikipedia graph (Boldi and Vigna 2004) with approx-
imately 4.2 million nodes and 101 million edges; where
nodes represent pages and edges represent hyperlinks. Each
page in our dataset is classified with ground-truth categories
(≈ 30 thousand classes) in the YAGO2 (Hoffart et al. 2011)
knowledge-base taxonomy. We select a set C of YAGO2 cat-
egories. Then for, each category c ∈ C, we create t rank-
ings of nodes with ground-truth category c as follows: for t
times, we select a page u in category c uniformly at random
(u.a.r.), then we compute the the Personalized PageRank
(PPR) ranking using u as seed of the walk. We set α = 0.15
as the jump-back probability in all the walks. Notice that
each of these rankings is biased towards the origin node and
hence, toward the nodes belonging to category c of the seed
node. This produces a set P of |P | = t|C| permutations over

nodes in the graph with ground-truth classes.4
Given rankings P as input (without their ground-truth cat-

egory) our aim is to cluster them as homogeneously as possi-
bly by category, and to derive a representative ranking from
each cluster. To do so we apply a heuristic based on the k-
means algorithm as follows. Given the permutations P and a
value k, we first assign the permutations to k clusters Ci for
i ∈ [k] u.a.r.. Then, we apply the following two procedures
in order for a certain number of iterations (or until conver-
gence). Step 1: For eachCi we compute the center permuta-
tion π̄i using the comparison-based algorithm in Section 5.2
over the permutations in Ci. Step 2: For each permutation
σj ∈ P we assign σj to the cluster Ci whose center π̄i min-
imizes the AP cost function dAP (π̄i, σj). Finally, the output
of the algorithm is a partition of the rankings in k clusters as
well as a center permutation π̄i for each cluster.

For our quantitative analysis, we selected t = 200 u.a.r.
nodes for each of the eight well-represented categories in
the Wikipedia taxonomy.5 In this experiment |P | = 1600
and each permutation has n ≈ 26,000 elements. To evalu-
ate the obtained clusters, we used the purity score– i.e., the
fraction of correctly classified rankings if each ranking in
cluster Ci is assigned to a majority ground-truth class in Ci
(purity 1 is obtained only for the perfect partitioning). Fig-
ure 1(b) shows the evolution of purity over the iterations set-
ting k = 8 and averaging over 20 runs. Notice that purity
converges to a high level (close to 80% percent) in a few it-
erations, showing that the obtained clusters are indeed close
to the ground truth classes. We then evaluate the correctness
of the obtained k = 8 centers’ rankings. To do so we use
the standard ROC and Precision at 10 measure obtained by
considering each position of the central ranking of a cluster
as correct if it belongs to a node of the majority class of that
cluster. The results are shown in Figure 1(b). Notice that the
algorithm converges quickly to good quality central rank-
ings (ROC significantly higher than 50%, precision close to
40%).

Finally we tested the ability of our algorithms (and of the
AP distance) to overcome noise in the lowest position of the
permutations — which are more noisy in practice (Vigna
2015). Consider a ranking σ in P and let c be the category
to which it is assigned. We randomized the lowest γn posi-
tions, for γ ∈ (0, 1), as follows: we kept the first (1 − γ)n
positions intact and then we added the remaining elements
in the order of a u.a.r. ranking chosen from a different cate-
gory. This randomization was applied to every ranking. As
γ grows, the described randomization increases the amount
of noise in the lower part of the rankings making them less
related to the original category (and more biased towards a
random different category). We then applied the k-means al-
gorithm as before. In this experiment we compared also the
result obtained by the same algorithm using the Kendall’s

4We restrict these rankings to contain only the nodes associated
with some category c ∈ C.

5We used scientific fields (computer scientists, neuroscientists,
mathematicians), art-related (American actors, singers, English
writers) and other categories (American politicians, Olympic ath-
letes). For this test we discarded from the sample nodes belonging
to more than one category in the list.
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Figure 1: Experimental Results for K-Means

tau distance instead of the AP distance (in Step 2) to assign
permutations to centers (all the rest left equal). Figure 1(c)
shows the purity reached after 10 iterations of k-means using
both measures depending on the amount of randomization.
We noticed that the results without randomization are quali-
tatively similar using the two measures. However, while the
AP-based algorithm is almost unaffected even when the low-
est 50% of rankings are randomized, the Kendall’s tau one
degrades its performance quickly. The AP maintains good
purity in the clusters found even for a 75% randomization of
the rankings. This confirms experimentally the intuition that
the AP distance is less affected by the noise occurring in the
lowest positions with respect to the Kendall’s tau distance.

Dataset Prec. Tau Prec. AP
BC1 0.662 0.674
BC2 0.621 0.601
CT 0.848 0.868

LA1 0.666 0.685
LC2 0.986 0.993
MB 0.613 0.648
OV 0.836 0.817
PC1 0.657 0.667
PC2 0.499 0.493

Average 0.709 0.716

Table 1: Average precision of the classification algorithm in
the human cancer dataset. The best result for each dataset is
highlighted in bold.

Classification We now turn our attention to a supervised
learning algorithm for classification based on our model. We
used 10 publicly available datasets from human cancer re-
search. From each dataset, we have a series of real-valued
feature vectors measuring gene expressions or proteomic
spectra — see (Jiao and Vert 2015) for details on the dataset.
Each feature vector is assigned to one of two binary classes
(e.g., “Normal vs. Tumor”, “Non-relapse vs. Relapse”).

It has been observed that in the context of high-
dimensional gene expressions, the relative order of the fea-
tures is more important than their absolute magnitude (Jiao
and Vert 2015; Geman et al. 2004), since the relative order is
less affected by pre-processing designed to overcome tech-

nological biases. Hence, as in (Jiao and Vert 2015), for each
vector in our dataset we obtain a permutation over the set
of the features by sorting them in decreasing order of value
(ties broken randomly). We split each dataset in training and
testing sets using 5-fold cross-validation.

We applied the following simple classification algorithm.
For each class we reconstructed the center permutation us-
ing our comparison-based algorithm (in Section 5.2) on the
set of permutations belonging to that class in the training
set. We then classified each permutation in the testing set
with the class of the center permutation having minimum
distance to that permutation. We used as distance either AP
or Kendall’s tau. The results are reported in Table 1 where
we show the average classification precision over 10 inde-
pendent runs of the 5-fold cross-validation (a total of 50
independent test/train experiments). The results show that
the AP distance improves over the Kendall’s tau distance in
most datasets, and the average precision improves as well.

These experiments confirm our original motivation for the
study of the AP model suggesting that items in the begin-
ning of the permutations are likely to have higher importance
and less noise in both supervised and unsupervised learning
tasks.

7 Conclusion
In this work we have introduced a novel stochastic permu-
tation model based on a more nuanced permutation statistic
measure that is widely used in practice. Despite its sophis-
tication is still amenable to formal analysis. This allows us
to define provably correct algorithms to learn the parameters
of this model efficiently.

We believe that this is a first step towards defining even
more sophisticated (and arguably more realistic) proba-
bilistic models of rankings for which many of the results
achieved in the traditional Mallows model literature could
be extended.

As a future work we would like to define models that al-
low both ties in the rankings—which are very frequent in
many practical applications (Vigna 2015)—and more gen-
eral cost functions as those recently defined in (Vigna 2015).
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A Proof of Theorem 1
We show that this problem is NP-Hard for an arbitrary multiset P by reducing an instance of the K-LM problem, which has
been shown to be NP-Hard in (Braverman and Mossel 2008), to a corresponding instance of the AP-ML problem.

Reduction from Kendall-ML to the AP-ML Given the multiset P of permutations over [n], we create the set F =
{f1, . . . , fN} composed by N = |P |n3 new elements such that F ∩ [n] = ∅. We denote the as SF∩[n] the set of permuta-
tions generated by F ∩ [n].

First, we create a multiset P̄ ′ which is composed by M = n10 copies of the pair of permutations (f1, . . . , fN , 1, . . . n) and
(f1, . . . , fN , n, . . . 1).

We then create a multiset P̄ ′′ such that for each permutation π ∈ P we have a permutation π̄ ∈ P̄ ′′ which is obtained by
prefixing the permutation π with (f1, . . . , fN ).

We finally the set P̄ ⊆ SF∩[n] as P̄ = P̄ ′ ∪ P̄ ′′.
Lemma 2. Let πAP be the solution of the AP-ML problem on the set P̄ . We then have πAP (i) = fi for i = 1, . . . , N .

Proof. We shall first verify that the the elements form F occupy the first N positions in πAP . If this is not the case then
there must exist a pair of elements fi ∈ F and i ∈ [n] s.t. πAP (i) = πAP (fi) + 1. Let π′ be the ranking obtained by just
inverting these two elements, given the construction of P̄ , for any σ̄ ∈ P̄ we have dAP (π′, σ) < dAP (πAP , σ) which leads
to a contradiction. A similar proof allows us to conclude that we indeed have πAP (i) = fi for i = 1, . . . , N . The lemma
follows.

Lemma 3 implies that the elements in [n] occupy the last n positions of the solution of the AP-ML problem oh the set P̄ . Let
πK be the sub-permutation obtained by considering just the elements of [n] in πAP .
Lemma 3. The permutation πK is a correct solution K-ML problem for the multiset P .

Proof. The proof is by contradiction. Suppose there exists a permutation π′K ∈ Sn such that
∑
σ∈P dK (π′K , σ) <∑

σ∈P dK (πK , σ). Let us then consider the permutation π′AP = (f1, . . . , fN , π
′
K) ∈ SF∩[n]: from Lemma 3 we have that

for any σ̄ ∈ P̄ there are no inversions between elements form F and element from [n] in π′AP with respect to σ̄. The
possible variation in the value of

∑
σ∈P̄ dAP (π′AP , σ) with respect to

∑
σ∈P̄ dAP (πAP , σ) can therefore depend just on

inversions involving elements from [n]. Since, by the construction of the permutations in P̄ , these elements appear in the
positions N + 1, N + 2, . . . , N + n, the inversions involving them can have weight at most 1/N = 1/|P |n3 and at least
1/(N + n) = 1/(|P |n3 + n) according to the AP measure. The contribution to

∑
σ∈P̄ dAP (πAP , σ) due just to the elements

from [n] is therefore at least
∑
σ∈P dK (πK , σ) /(N + n) while the contribution to

∑
σ∈P̄ dAP (π′AP , σ) due just to the ele-

ments from [n] is at most
∑
σ∈P dK (π′K , σ) /(N). Since we have

∑
σ∈P dK (π′K , σ) <

∑
σ∈P dK (πK , σ) ≤ |P |n2/2 we can

conclude: ∑
σ∈P dK (πK , σ)

N + n
>

∑
σ∈P d

′
K (πK , σ)

N

If that is the case, then the permutation π′AP = (f1, . . . , fN , π
′
K) ∈ SF∩[n] is such that:∑

σ∈P̄

dAP (π′, σ) <
∑
σ∈P̄

dAP (πAP , σ) .

Since πAP is a solution of the AP-ML problem for P̄ we have a contradiction. The lemma follows.

B Proof of Theorem 2
In the following let pi,i−j , denotes the probability that element πi has been inserted in position 1 ≤ i−j ≤ i of the permutation
σi during the i-th step of the generative process for 0 ≤ j < i ≤ n. We have:

pi,i−j =
1

Bi
exp

(
−βn

2

j

i− 1

)
(2)

Proof of Theorem 2. The proof is by induction on i. In the base case for i = 1 we have σ1 = π1 with probability one. Since
the the only possible permutation has distance zero from the center the statement is therefore verified. For i > 1, let σi be
the sequence given as output of the process at step i for which the element πi is placed in position i − j of the corresponding
permutation σi−1. By inductive hypothesis, the probability of σi−1 being returned by the process at step i− 1 is given by:

Pr
MAP( n

i−1β,π[i−1])
(σi−1) =

1

Zβ [i− 1]
exp(−βdAP

(
π[i− 1], σi−1

)
), (3)



where Zβ [i] =
∑
σi exp

(
−βdAP

(
π[i], σi

))
We have:

dAP
(
π[i], σi

)
= dAP

(
π[i− 1], σi−1

)
+

j

i− 1
(4)

with dAP
(
π[1], σ1

)
= 0. We can express Zβ [i] as a function of Zβ [i− 1] as follows:

Zβ [i] =
∑
σi

exp
(
−βdAP

(
π [i] , σi

))
=
∑
σi−1

exp
(
−βdAP

(
π [i− 1] , σi−1

)) i−1∑
j=0

exp

(
−βn

2

j

i− 1

)
And therefore:

Zβ [i] = Zβ [i− 1]Bi (5)

The probability of obtaining σi as output of the process at step i is given by the product of the probability of of obtaining
σi−1 as output of the process at step i− 1 times the probability of placing element πi in position i− j:

Pr
MAP( n

i−1β,π[i−1])
(σi−1)pi,i−j =

1

Zβ [i− 1]
exp(−βdAP

(
π[i− 1], σi−1

)
)

1

Bi
exp

(
−βn

2

j

i− 1

)
=

1

Zβ [i− 1]Bi
exp(−β

(
dAP

(
π[i− 1], σi−1

)
+

j

i− 1

)

From (4) and (5) we therefore have:

Pr
MAP( n

i−1β,π[i−1])
(σi−1)pi,i−j =

1

Zβ [i]
exp(−βdAP

(
π[i], σi

)
) = Pr

MAP(n
i β,π[i])

(σi)

Then the theorem follows.

C Proof of Theorem 3
We compute the probability of swap using our generative process. The relative order between πi and πi+1 in σ is determined
when πi+1 is inserted in σi+1 in the generating process. Later insertions of items cannot change that order. Thus, the probability
of a swap between elements πi−1 and πi in σ is given by the probability of inserting πi in a position smaller or equal to the one
in which the element πi−1 was previously inserted.

Let q = e−βn/2 than q ≤ 1 with equality iff β = 0. The generative process inserts the element πi in position 1 ≤ i− j ≤ i
during the i-th step with probability

pi,i−j = B−1
i exp

(
−βn

2

j

i− 1

)
= B−1

i q
j

i−1 .

Thus, Pr (σ(πi+1) < σ(πi))

=
1

BiBi+1

i∑
j=0

q
j
i

(
j−1∑
t=0

q
t

i−1

)
=

∑i
j=0

∑j−1
t=0 q

j
i + t

i−1∑i
j=0

∑i−1
t=0 q

j
i + t

i−1

=

∑i
j=0

∑j−1
t=0 q

j
i + t

i−1∑i
j=0

∑j−1
t=0 q

j
i + t

i−1 +
∑i
j=0

∑i−1
t=j q

j
i + t

i−1

=
A

A+B

We can now match each element q
j
i + t

i−1 in B to element q
t+1
i + j

i−1 in A. It is easy to verify that q
j
i + t

i−1 ≥ q
t+1
i + j

i−1 with
equality either if q = 1 or t = i− 1 and j = 0. . This implies A ≤ B with equality iff β = 0, proving the claim.



D Proof of Theorem 4

Consider the process of generating the permutation σ ∼ MAP (π, β). While the order between πi−1 and πi is fixed when πi
is in inserted to the (partial) permutation, their final locations are influenced by the insertions of elements πi+1, . . . , πn. In
particular, the distance between πi−1 and πi is increased when an element is inserted between them.

We now use the mapping defined in the proof of the previous theorem, mapping the event where πi−1 was inserted in position
i − 1 − j and πi was inserted in position i − t with t ≤ j to the event with of lower or equal probability in which πi−1 was
placed in position i − 1 − t while πi was inserted in position i − j + 1. The interval between the two elements in both cases
starts at location i − 1 + j. When σ(πi−1) < σ(πi) the length of the interval is j − t + 1 and when σ(πi) < σ(πi−1) the
length of the interval is j − t. Since the insertion of the elements πi+1, . . . , πn is independent of the locations of πi−1 and πi
the expected increase in the location of σ(πi) is no less than the expected increase in the location of σ(πi−1).

E Proof of Theorem 6

In the following, we use pi,k to denote the probability that the element πi has been inserted in position 1 ≤ k ≤ i of the
permutation σi during the i-th step of the generative process. Let k = i− j from equation ( 2) we have:

pi,k = pi,i−j =
1

Bi
exp

(
−βn

2

j

i− 1

)

=
exp

(
βn
2

)
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βn
2

) exp
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−βn2

j
i−1
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exp
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k
i−1

)

=
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βn
2
i−1−j
i−1

)
i−1∑
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exp
(
βn
2
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)

= exp

(
βn

2

k − 1

i− 1

) exp
(

βn
2(i−1)

)
− 1

exp
(

βn
2(i−1) i

)
− 1

We first introduce the following lemma which will prove useful in the following derivations.

Lemma 4. Let σi ∼ MAP
(
n
i βn, π[i]

)
be a permutation produced at the i-th step of the algorithm and let σi (πi) ∈

{1, 2, . . . , i} be the position in which the element πi added during the i-th step. We then have:

Pr
(
σi(πi) ≤ j

)
=

exp
(

βn
2(i−1)j

)
− 1

exp
(

βn
2(i−1) i

)
− 1

. (6)



Proof. We have:

Pr
(
σi(πi) ≤ j

)
=

j∑
k=1

Pr
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σi(πi) = k

)
=
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k=1
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exp
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Proof of Theorem 6. The probability Pr (Si,i+k+1) can be upper bounded by using law of total probability conditioning on the
position in which the i-th element was inserted at the i-th step. The probability of πi and πi+k+1 to be swapped in σ depends on
the position occupied by πi when πi+k+1 is inserted according to the Generative Process described in Section 4. In particular
said probability increases monotonically with the index of the position occupied by πi prior to the insertion of πi+k+1, a sketch
of the proof for this statement follows. If prior to the insertion of πi+k+1 element πi is occupying position r ≤ i + k, then
the swap occurs iff πi+k+1 is inserted in a position with index smaller or equal than r. If instead prior to the insertion πi is
occupying position r + 1, then the swap occurs iff πi+k+1 is inserted in any position with index smaller or equal than r + 1.
Since the probability of inserting πi+k+1 in in a position with index smaller or equal than r + 1 is strictly greater than the
probability of inserting πi+k+1 in in a position with index smaller or equal than r, the statement is verified. Next, we observe
that the position occupied by element πi when πi+k+1 is inserted depends on the position in which πi was inserted during the
i-th step. In particular, if πi was inserted in position j during the the i-th step, the leftmost position it can occupy at step i+k+1
is j + k. This occurs iff all the k elements inserted between the i-th and the i + k + 1-th step are swapped with respect to the
i-th element. Following our previous observations, we can then conclude that the probability of the i-th and the i + k + 1-th
elements being swapped in σ given that the i-th was inserted in position j is upper bounded by the probability of swapping the
elements given that the i-th is occupying the leftmost rightmost possible position, hence j + k, whenπi+k+1 is inserted. We
thus have:

Pr (Si,i+k+1) ≤
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pi,jPr
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Since exp
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we have:
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2ij + kj + ik − j − k − 2i2 − 2ik + k + 1

(i+ k)(i− 1)

))

≤
i∑

j=1

exp

(
βn

2

(
2ij + kj − j − 2i2 − ik + 1

(i+ k)(i− 1)

))

≤
i∑

j=1

exp

(
βn

2

(
2ij + kj − j − 2i2 − ik + 1 + i− i

(i+ k)(i− 1)

))

≤
i∑

j=1

exp

(
−βn

2

(
(i− j)(2i+ k − 1) + (i− 1)

(i+ k)(i− 1)

))

≤ exp

(
− βn

2(i+ k)

) i−1∑
y=0

exp

(
−βn

2

(
2i+ k − 1

(i+ k)(i− 1)

)
y

)

≤ exp

(
− βn

2(i+ k)

) exp
(
−βn2

(
2i+k−1

(i+k)(i−1) i
))
− 1

exp
(
−βn2

(
2i+k−1

(i+k)(i−1)

))
− 1

Again since exp
(
−βn2

(
2i+k−1

(i+k)(i−1)

))
> exp

(
−βn2

(
2i+k−1

(i+k)(i−1) i
))

we have:

Pr (Si,i+k+1) ≤ exp

(
− βn

2(i+ k)

) exp
(
−βn2

(
2i+k−1

(i+k)(i−1) i
))

exp
(
−βn2

(
2i+k−1

(i+k)(i−1)

))
≤ exp

(
− βn

2(i+ k)

)
exp

(
−βn

2

(
2i+ k − 1

(i+ k)(i− 1)
(i− 1)

))
≤ exp

(
− βn

2(i+ k)

)
exp

(
−βn

2

(
(i+ k) + (i− 1)

i+ k

))
≤ exp

(
−βn

2

)
exp

(
−βn

2

i

i+ k

)


