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Rumour Spreading

Diffusive processes on graphs are an important paradigm
in several fields:

Systems: How to spread information on network?
Social Networks: Why posts become viral?

Sociology: What makes innovations/products accepted?
Epidemiology: How diseases spread?

We consider various models of information diffusion: Push,
Pull and SIR.
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Background

Most results known are asymptotic bounds on the
competition time:

e At most O(n log(n)) (Feige et. al, 90)

e Fast in Erdos Reyni and Preferential
Attachement (Elsasser et al. 2006, Chierichetti
et al. 2009).

e Fast in high conductance graphs. (Chierichetti et
al. 2010, Giakkoupis et al. 2011)



Our Goal
Goal #1: Beyond asymptotics

We are interested in the expected number of informed nodes
for each time step of the process
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Notice: this is known only for very simple graphs (e.g. Clique, Pittel ’87)



Our Goal
Goal #2: Prediction with limited information

Motivation: real networks are often unavailable
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Caveat: this is clearly an ill-posed question...

... But surprisingly, it is possible for real social network



How Can we Achieve this?

A simpler problem: model the unknown graph by a
known random graph generation process.
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How Can we Achieve this?

A simpler problem: model the unknown graph by a
known random graph generation process.
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Which Graph Model?

We use the configuration model as random graph
model.

SIR on configuration model matches real post diffusions
in Twitter (Goel et al., 2013):

 Distribution of popularity of posts.
e Virality of the diffusion.



Our Contribution

A predictor algorithm for the configuration model
for the Push, Pull and SIR Processes:

e Space efficient: very large graphs can fit in
memory.

e Provably exact on random graphs.

The algorithm predicts accurately the both the
popularity and the virality on real social networks.



Outline of the Talk

e The diffusion processes;
e Our algorithm(s);

e Experimental evaluation;
e Conclusions.



The Push-Pull Process



Push-Pull Protocol
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Push-Pull Protocol
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Push-Pull Protocol

5 /‘ PULL
\




SIR Process
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Our Algorithm



Naive Solution

Simulate two random processes: the network
generation and the rumour spreading.

Naive algorithm:
e Generate a random network G.
e Simulate rumour spreading on G.
e Run several times in parallel and average.

Space bottleneck: Real networks are too large to fit
in main memory!



Our Approach

We can reduce the space to O(n) vs O(n+m) in directed
graphs and even o(n) in undirected ones.

This is a significant reduction not only in asymptotic!

Deferred decision principle: the topology is
discovered as nodes are involved in the rumor
spreading process and immediately forget.



Intuition

Only the local neighbourhood determines the
evolution of the process.
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We do not store the edges of the graph.



Undirected Graphs

We use an efficient matrix representation.

Low degree nodes
storedina Kx K
matrix

Number of
Nodes

High degree nodes
stored individually

Node
K Degree



Undirected Graphs

Livejournal

Facebook 720M <5000 >97%
(estimates)
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For power law graphs of exponent (¢ the cost is n 1+«

In practice the entire Facebook graph could fit in
few gigabytes.



Results on Random Graphs



Results on Random Graphs
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This can be proved formally.



Results on Real Graphs



Number of privy nodes
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The model is qualitatively accurate for the social
network we tested



Number of privy nodes

More Social Networks - Push
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More Social Networks - Push
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For non-social networks the prediction is not

accurate.



Results

Prediction performances strongly depends on the
network class:

 Very good for social networks: friendship graphs,
trust networks, collaboration networks.

e Poor for non-social networks: web graphs, road
networks, etc.

This dichotomy has been observed in other contexts:
degree correlations, graph compressibility, etc.

What is the reason for this phenomenon?



Neighbourhood Function

The neighbourhood function F(t) of graph measures how
many pairs of nodes are at distance <=t

This measure has been shown to tell apart social and non-
social graphs.



Neighbourhood F. vs Prediction Quality
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Social graphs have a neighbourhood function close
to the configuration model.



Neighbourhood F. vs Prediction Quality
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Non-Social graphs have a neighbourhood function
far from the configuration model.



Neighbourhood F. vs Prediction Quality

Correlation Neighborhood F. vs Prediction Error
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The correlation is strong and statistically significant.



Conclusion

e Rumour spreading processes can be predicted
accurately in social graphs based on very limited
information on the graph.

« Our predictor is provably correct and space efficient.

» We characterise the class of graph that can be
predicted based on the Neighbourhood Function.

« We would like to extend our model to more nuanced
diffusion processes.



Thank you for your attention!



