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ABSTRACT
Densest subgraph computation has emerged as an important
primitive in a wide range of data analysis tasks such as com-
munity and event detection. Social media such as Facebook
and Twitter are highly dynamic with new friendship links
and tweets being generated incessantly, calling for efficient
algorithms that can handle very large and highly dynamic
input data. While either scalable or dynamic algorithms for
finding densest subgraphs have been proposed, a viable and
satisfactory solution for addressing both the dynamic aspect
of the input data and its large size is still missing.

We study the densest subgraph problem in the the dy-
namic graph model, for which we present the first scalable
algorithm with provable guarantees. In our model, edges
are added adversarially while they are removed uniformly at
random from the current graph. We show that at any point
in time we are able to maintain a 2(1+ε)-approximation of a
current densest subgraph, while requiring O(poly log(n+r))
amortized cost per update (with high probability), where r
is the total number of update operations executed and n
is the maximum number of nodes in the graph. In con-
trast, a näıve algorithm that recomputes a dense subgraph
every time the graph changes requires Ω(m) work per up-
date, where m is the number of edges in the current graph.
Our theoretical analysis is complemented with an extensive
experimental evaluation on large real-world graphs showing
that (approximate) densest subgraphs can be maintained ef-
ficiently within hundred of microseconds per update.
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1. INTRODUCTION
Finding dense subgraphs has emerged as an important

primitive in a wide range of data analysis tasks such as com-
munity detection [17, 19, 26], event detection [7], link spam
detection [20], computational biology [34], distance query
indexing [4, 18], etc. Densely connected users in a social
network might correspond to communities, i.e., sets of users
sharing similar interests or being affiliated with a same or-
ganization such as a university or a company. Entities such
as city, person and company names, starting suddenly to
co-occur in tweets might indicate that an interesting event
involving the corresponding entities is taking place. Dense
subgraphs have also been employed to give a compact rep-
resentation of node distances in a graph, so as to efficiently
compute distances between any two nodes given in input.

In the aforementioned application scenarios, data is large
and inherently dynamic. In Facebook, users join and leave
the social network frequently, with new friendship links be-
ing established or removed all the time. In Twitter, tweets
are generated incessantly making older tweets less interest-
ing. As a result, communities evolve over time, new events
trigger new dense subgraphs in the corresponding entity-
relationship graph, while changing distances between nodes
in a graph requires frequent re-indexing.

This calls for efficient algorithms that can cope with large
and highly dynamic streams of input data. While either
scalable [10] or dynamic algorithms [6] for finding densest
subgraphs have been proposed, a viable and satisfactory so-
lution for addressing both the dynamic aspect of the input
data and its large size is still missing.

We present the first scalable algorithm for the computa-
tion of a densest subgraph in the dynamic graph model [23]
with provable guarantees. We focus on the average degree
density, which is defined as the ratio between the number of
edges and the number of nodes of a given undirected graph.
The input of our problem consists of an undirected graph
as well as a sequence of update operations on such a graph



(namely edge additions and deletions), describing its evolu-
tion over time. At each point in time in the sequence, we
would like to maintain a subgraph of the current graph with
near-optimal average degree density.

We consider a model similar to the one studied in [9],
where edges are added adversarially while they are removed
uniformly at random from the current graph. We show that
at any point of the sequence of updates, we are able to
maintain a 2(1 + ε)-approximation of a current densest sub-
graph, while requiring O(poly log(n+r)) amortized cost per
update (with high probability), where r is the total num-
ber of update operations executed and n is the maximum
number of nodes in the graph. Observe that a näıve algo-
rithm, which recomputes the densest subgraph every time
the graph changes, would require Ω(m) work per update,
where m is the number of edges in the current graph.

Our theoretical analysis is complemented with an exten-
sive experimental evaluation on real world graphs showing
the effectiveness of our approach. In particular, we evalu-
ate our algorithms in the sliding window model, where the
most recent edges (e.g. generated in the last hour or day)
define the current graph. This entails frequent updates with
the most recent edges being added to the current graph and
the less recent ones being removed. We show that approxi-
mate densest subgraphs can be maintained within hundreds
of microseconds per update (on average) on large graphs re-
quiring more than one billion of update operations, making
our algorithms an effective tool for studying the evolution
of communities in a social network, for finding events auto-
matically in Twitter, as well as, for efficiently maintaining
node distance indexes.

The rest of the paper is organized as follows. In Section 2
we review the relevant literature. In Section 3 we define
formally the problem. Then, in Section 4 we introduce our
algorithms and prove their approximation guarantees and
amortized cost bounds. Later, in Section 5 we evaluate ex-
perimentally our algorithms on several large scale datasets.
Finally, in Section 6 we recap and hint at possible interesting
research directions stemming from our work.

2. RELATED WORK
In recent years, there have been significant efforts in devis-

ing efficient algorithms for finding densest subgraphs. Due
to the large amount of work that has been done in this re-
search area, our survey might not be comprehensive.
Densest subgraph problem. Several definitions of density
have been studied in literature including cliques and quasi-
cliques [13], α-β-communities [32], minimum degree den-
sity [39], k-cores [38] and the densest subgraph [21]. Among
these, the average degree density stands outs as a natural
definition of density. Given an undirected graph, its average
degree density is defined as the ratio between the number of
edges and the number of nodes in such a graph. Charikar [16]
devised a linear-programming based approach as well as a
linear 2-approximation algorithm for such a problem. Bah-
mani et al. [10] provided a 2(1+ ε) approximation algorithm

that can be implemented in O
(

log(n)
ε

)
streaming passes over

the graph (for a total cost of O
(
m log(n)

ε

)
). More recently,

Bahmani et al. [8] provided a near-optimal algorithm in the
MapReduce model of computation. In [11], authors study
the problem of finding several subgraphs with maximum to-

tal density and limited overlap. In [40], heuristics for finding
quasi-cliques [40] are presented. All previously mentioned
results hold for undirected graphs, while in [25] authors
study the densest subgraph problem in directed graphs.
Applications. Finding dense subgraphs in large input graphs
has emerged as an important subroutine used to tackle a
host of real-world problems [29]. Saha et al. [35] showed
how finding dense subgraphs might help in identifying in-
teresting and novel patterns in gene annotation networks.
Chen et al. [17] devise a graph partitioning algorithm based
on some definition of density and applied it extensively on
social and biological networks. Finding dense regions in web
graphs has received large attention recently [19,20] as those
regions might represent some link-spam activity. Douris-
boure et al. [19] proposed an efficient heuristic for such a
problem. Similarly Kumar et al. [27] cast the problem of
finding communities of web-pages as the problem of mining
dense bipartite subgraphs. Densest subgraph computation
is an important subroutine in graph indexing for efficient
reachability and distance queries [18,24], as well as for graph
compression [14]. Angel et al. [6] show how dense subgraphs
represent interesting events in Twitter.
Dynamic settings. Das Sarma et al. [37] studied the densest
subgraph problem in a dynamic version of the congest model
for distributed computation [33], which presents significantly
different challenges. In this model, authors develop a (2+ε)-

approximation algorithm which requires O
(
D log(n)

ε

)
paral-

lel rounds where D is the diameter of the network. Contrary
to our work, there is no guarantee that the amortized cost
be poly-log(n). Angel et al. [6] study the problem of effi-
ciently maintaining dense subgraphs under streaming edge
weight updates, so as to find interesting events in Twitter.
Authors consider a different definition of density, while they
focus on finding small dense subgraphs (with at most 10
nodes). In our work, we would like not to restrict our at-
tention to graphs with small number of nodes given that
this is not the case in many cases of interest (such as com-
munities in a social network). Moreover, in contrast to our
work there is no guarantee that the amortized cost be poly-
log(n) per update. Valari et al. [41] study the problem of
computing the top-k densest subgraphs, when the densest
subgraph is removed recursively at each time. They address
such a problem in dynamic graph collections, where at each
step graphs might arrive or be removed from the collection.
Other authors have studied other definitions of density in
dynamic graphs. Lee et al. [28] used (k, d)-cores to discover
new stories from social streams and track their evolution.
Several authors [5, 31, 36] addressed the related problem of
maintaining a k-core decompositions in graphs subject to
dynamic changes and in streaming. In [23] authors study
the problem of efficiently answering queries on the proper-
ties of an evolving graph.

None of the previous approaches maintains an approxima-
tion of the densest subgraph in amortized poly-log(n) time
per update and can cope with billions of edge additions or
removals. Recently, independently from our work, Bhat-
tacharya et al. [12] (unpublished at the time of preparation
of this paper) studied the densest subgraph problem in the
streaming model of computation achieving strong theoreti-
cal guarantees.

3. PROBLEM DEFINITION



Preliminaries. Let G = (V,E) be an undirected graph.
For any set of vertices S ⊆ V , we let E(S) to be the set of
edges induced by S, i.e., E(S) = {(u, v) : (u, v) ∈ E ∧ u, v ∈
S}. The average degree density ρG(S) is defined as: ρG(S) =
|E(S)|
|S| . In the rest of the paper we omit the subscript G in

ρG(S) when it is clear from the context, while we use the
term density instead of average degree density, for simplicity.
We denote by ρO the density of a densest subgraph. We say
that an algorithm computes an α-approximation of a densest
subgraph S ⊆ V if such an algorithm computes a subgraph
S′ ⊆ V such that ρ(S) ≤ αρ(S′). We say that an algorithm
has amortized time O(T (n)) per update, if for any sequence
of ` update operations such an algorithm completes in time
O(` · T (n)). We denote by polylog(n) a polynomial in the
logarithm, such as log2 n.

Problem definition. We study the densest subgraph prob-
lem in the dynamic graph model [23], where a sequence of
update operations on an input graph describes the evolu-
tion of such a graph over time. Our input consists of an
undirected graph G = (V,E) as well as an online sequence
of update operations on the input graph, namely edge addi-
tions and deletions. Every edge in such a sequence is either
added adversarially (i.e. so as to cause maximum discomfort
to the algorithm) or is removed uniformly at random from
the current graph. We assume that the edges to be added
(adversarially) are chosen without taking into account the
set of removed edges. Our graph-evolution model is sim-
ilar to the model in [9]. Our goal is to maintain at any
point in time in the sequence a 2(1 + ε)-approximation of
a densest subgraph with amortized time of O(polylog(|V |),
for any ε > 0. In particular, at any point in time in the se-
quence, the output of our algorithm consists of a collection
of subsets of V , with the last among such subsets inducing a
2(1 + ε)-approximation of a densest subgraph in the current
graph. The amortized cost must include the time required
to produce such subgraphs in output.

4. ALGORITHMS
In this section, we present several algorithms to compute

an approximation of a densest subgraph. We start by con-
sidering the static case to warm-up, then, we generalize our
solution to a dynamic setting. For simplicity, we initially
consider a model with edge addition only which is then gen-
eralized to the most general case with both edge addition
and removal.

4.1 Warm-up: Static Case
We first design an approximation algorithm for the static

case, which is perhaps not interesting per se but it is pivotal
in dealing with the dynamic case.

Consider the following algorithm inspired by the algo-
rithm introduced in [10]. Given rational numbers β > 0, ε >
0, we start from the input graph G and remove iteratively all
nodes with degree < 2(1 + ε)β from the current graph, until
the graph becomes empty or the total number of iterations
becomes larger than dlog1+ε(n)e — notice that log1+ε(n) =

O
(
log(n)ε−1

)
. We then return the subgraph with maximum

density among all subgraphs computed throughout the exe-
cution of the algorithm. It can be shown that if the density
ρO of a densest subgraph is known then one can run such an
algorithm with β = ρO

2(1+ε)
(i.e. at each step we remove nodes

with degree smaller than ρO ) to quickly find an approximate
densest subgraph. See Algorithm 1 for a pseudo-code.

Algorithm 1 Find(G(V,E), β > 0, ε > 0)

S0, S̄ ← V, t← 0.
while St 6= ∅ and t ≤ dlog1+ε(n)e do

Let A(St) be the set of nodes with degree < 2(1 + ε)β
in Gt = (St, E(St)).

St+1 ← St \A(St).
If ρ(St+1) > ρ(S̄) then S̄ ← St+1.
t← t+ 1.

end while
return Ḡ = (S̄, E(S̄)).

Unfortunately ρO is usually not known in advance, so in
order for Algorithm 1 to be useful we need to understand
its behavior when executed with an arbitrary β > 0. This
is clarified by the following lemma, whose proof goes along
the lines of the proofs in [10].

Lemma 1. If 0 < β ≤ ρO
2(1+ε)

, Algorithm 1 finds a sub-

graph with density at least β, while if β > ρO a subgraph
with density strictly less than β is found.

Proof. If β > ρO, then the claim follows by definition of
ρO. We show that in the case when Algorithm 1 does not
find a subgraph with density at least β, with 0 < β ≤ ρO

2(1+ε)
,

the density of a densest subgraph is strictly less than ρO,
leading to a contradiction.

Let St ⊆ V be the set of nodes active at rounds t of
the algorithm and A(St) be the set of nodes with degree
< 2(1 + ε)β in Gt = (St, E(St)). We have

2|E(St)| =
∑

v∈St\A(St)

δGt(v) +
∑

v∈A(St)

δGt(v).

Furthermore if Algorithm 1 does not find a graph with
density at least β then ρ(St) < β for every t, otherwise the
algorithm would have found a subgraph with density at least
β. So by considering only the first summation term in the
previous equation we derive

2|E(St)| ≥ 2β(1 + ε)|St \A(St)| > 2ρ(St)(1 + ε)|St \A(St)|,

where the second inequality follows from β > ρ(St). Then

2|E(St)| > 2(1 + ε)|St \A(St)|
|E(St)|
|St|

,

which implies |St+1| = |St \ A(St)| < 1
1+ε
|St|, for every

step t ≥ 1. Hence, Algorithm 1 terminates at step t ≤
dlog1+ε(n)e with all nodes and edges being removed from
the input graph G.

We now show that if at the end of the algorithm all edges
are removed and β ≤ ρO

2(1+ε)
, then the density of a densest

subgraph in G is strictly less than ρO leading to a contra-
diction.

We define a directed graph H, obtained by finding an
orientation of the edges in the input graph G as follows. At
every step t ≥ 1 of Algorithm 1, for every node v in A(St) we
assign all edges of v in Gt, to v (breaking ties arbitrarily).
Let δH(v) be the in-degree of v in the directed graph H.
From the fact that all nodes and edges have been removed
at the end of the algorithm, it follows that all edges are
assigned to some node. We can then write:

ρ(SO) =
|E(SO)|
|SO|

≤
∑
v∈SO

δH(v)

|SO|
< 2(1 + ε)β ≤ ρO,



which leads to a contradiction. Therefore, our algorithm
would have found a subgraph with density at least β, when
executed with β ≤ ρO

2(1+ε)
.

The following lemma can be proved in a very similar way
to Lemma 1, its proof is omitted for brevity and deferred to
the full version of the paper.

Lemma 2. Let β, ε > 0. Let Ḡ and Sk be, respectively, the
subgraph and the k-th set found by Algorithm 1 with input
β, ε, where k = dlog1+ε(n)e. If ρ(Ḡ) < β, then Sk = ∅.
Moreover, if Sk = ∅ then ρO < 2(1 + ε)β.

Lemma 1 suggests the following natural algorithm for find-
ing an approximate densest subgraph in the static case:
Starting from a “sufficiently small” value for β, we run Algo-
rithm 1 with different values of β (namely all integral powers
of (1 + ε)) outputting the subgraph with maximum density
among those we found. Algorithm 2 shows a pseudo-code
for such an algorithm, where ρ̄ is a lower bound for the den-
sity of a densest subgraph (this parameter will be used in
the next sections).

Algorithm 2 FindDensest(G(V,E), ρ̄, ε > 0)

Ḡ = ∅.
β ← max

(
1

4(1+ε)
, (1 + ε)ρ̄

)
.

while (true) do
G′ ← Find(G, β, ε).
if ρ(G′) ≥ β then

Ḡ← G′.
β ← (1 + ε)ρ(Ḡ).

else
return (β, Ḡ).

end if
end while

While Algorithm 2 might perform worse than other known
algorithms for the static case, it will be a key ingredient
for our dynamic algorithms. We conclude this section by
proving its performance guarantees.1

Theorem 1. For any ε > 0, FindDensest(G, 0, ε) com-
putes a 2(1 + ε)2-approximation of a densest subgraph.

Proof. If the input graph is not empty then ρO ≥ 1
2
.

Therefore, it follows from Lemma 1 that Algorithm 2 exe-
cuted with β = 1

4(1+ε)
finds in the first step a set of density

at least β.
The loop in Algorithm 2 terminates as soon as a subgraph

with density β is not found, while outputting a subgraph
with density β

1+ε
. From Lemma 1 it follows that ρO ≤ 2(1+

ε)β, which proves the approximation guarantee.

Theorem 2. For any ε > 0, FindDensest(G, 0, ε) re-
quires O(m log(n)ε−1) operations.

Proof. From the fact that ρO ≤ n and from Lemma 1,
it follows that the while loop of Algorithm 2 is executed at
most dlog1+ε ne times. Since the input graph in undirected,
Algorithm 1 can be implemented in O(n+m) using the same
method described in [25] for computing densest subgraphs
in an undirected graph.

1For simplicity, we express the approximation guarantee of
our algorithms as 2(1 + ε)2, for any ε > 0. Observe that
this is equivalent to say that its approximation guarantee is
2(1 + ε), for any ε > 0. The asymptotic amortized cost does
not change.

4.2 Dynamic Case: Edge Insertion Only
In this section, we describe how to maintain a 2(1 + ε)2-

approximation of a densest subgraph with amortized cost of

O
(

log(n)2

ε2

)
per edge insertion. We first assume that the set

V of all the nodes appearing in the evolving graph is known
in advance, then we show how to remove such assumption.

The core idea is to maintain the main properties of the
Find and FindDensest algorithms, without having to re-
run the algorithm from scratch every time the graph is up-
dated.

Consider the first call to Algorithm 2. Let S0, . . . , Sk, k =
dlog1+ε(n)e be the sets computed by the last call to Find in
Algorithm 2. Our algorithm will maintain throughout the
execution the following invariant:

Invariant 1. Given β, ε > 0 and the current graph G =
(V,E), the nodes in V are organized as a collection of sets
S0, . . . , Sk, k = dlog1+ε(n)e, where

• S0 = V ;

• St+1 is obtained from St by removing all nodes with
degree less than 2(1 + ε)β in Gt = (St, E(St)), t =
0, . . . , k − 1;

• Sk = ∅.

Note that Invariant 1 is satisfied at the end of any call
to Algorithm 2 (it follows from Lemma 2), while we main-
tain it as follows. Given an edge (u, v) being added to the
current graph G = (V,E) and a collection of sets S0, . . . , Sk
satisfying Invariant 1, we first check whether adding (u, v)
to G does not violate the invariant. If this is the case we
add (u, v) to G while leaving the sets St’s unchanged. Oth-
erwise, let u ∈ V , and let t be such that u ∈ St \ St+1 and
δGt(u) ≥ 2(1 + ε)β, while let t̂ > t be the smallest index
such that δGt̂(u) < 2(1 + ε)β. If t̂ = dlog1+ε(|V |)e then we
rebuild the sets St’s from scratch, which is done by running
Algorithm 2 and using the sets St’s computed in the last call
to Find.

Otherwise, we add u to the sets St+1, . . . , St̂. In turn, we
might need to move the neighbors of u to other sets and so
on. This is iterated for u and v until the invariant becomes
satisfied or we need to move some node to a set St̂, with
t̂ = dlog1+ε(|V |)e. In the latter case, we rebuild the sets St’s
from scratch.

A pseudo-code of the algorithm is shown in Algorithm 3.
The algorithm returns true if the sets St’s need to be rebuilt,
which is done in Algorithm 4. Note that maintaining the
invariant might be costly sometimes, as moving nodes from
one set to the other might trigger a chain effect involving
a large part of the nodes in the current graph. However,
we are able to prove that this does not happen “often” (see
Theorem 4).

Armed with an algorithm for maintaining our invariant,
we now present the main algorithm which is executed con-
tinuously. Algorithm Main (Algorithm 4) receives an initial
graph G = (V,E) (potentially with no edges) in input and
runs FindDensest to build a collection of sets S0, . . . , Sk
satisfying Invariant 1. Then the algorithm outputs our ap-
proximation of the densest subgraph Ḡ. When a new edge
(u, v) is added to the current graph G, algorithm Add is ex-
ecuted and the sets St’s are updated so as to maintain the
invariant. If this can be done, then the density of the densest



Algorithm 3 Add((u, v), (S0, . . . , Sk), G = (V,E), β, ε)

Require: S0, . . . , Sk must satisfy Invariant 1
Ensure: S0, . . . , Sk are updated so to satisfy Invariant 1

after adding (u, v), if this is not possible return a flag
Rebuild = true signaling that such sets must be rebuilt.

E ← E ∪ {(u, v)}.
Update degrees of u and v.
Stack ← ∅.
Push(u, v, Stack).
while Stack is not empty do

w ← Pop(Stack).
Let St be such that w ∈ St \ St+1.
If δGt(w) < 2(1 + ε)β continue.
Let t̂ > t be smallest such that δGt̂(w) < 2(1 + ε)β.

If t̂ = dlog1+ε(|V |)e return true.
Add w to the sets St+1, . . . , St̂.
Push all neighbors of w to the Stack.

end while
return false.

subgraph has not increased significantly (this follows from
Lemma 2). In this case the previously computed subgraph
Ḡ is still a good approximation of the densest subgraph.

Otherwise, we rebuild the sets from scratch by running
FindDensest as in this case the density of the densest sub-
graph might have increased. After this operation Main out-
puts a new dense subgraph Ḡ. Notice that although re-
building the St’s is an expensive operation (as it requires
to process the whole input graph), this is performed only a
poly-log number of times (as β is multiplied each time by a
factor of (1 + ε) and never decreases).

Algorithm 4 Main(G = (V,E), ε)

(β, Ḡ)← FindDensest (G, 0, ε) and let S0, . . . , Sk be the
sets computed by Find.
Output Ḡ.
while (true) do

Wait for a new edge (u, v).
Rebuild← Add((u, v), S0, . . . , Sk, G, β, ε).
if (Rebuild) then

(β, Ḡ)← FindDensest (G, β, ε) (update S0 . . . Sk).
Output Ḡ.

end if
end while

We now study the approximation guarantee of our algo-
rithm.

Theorem 3. The algorithm always maintains a 2(1+ ε)2

approximation of the densest subgraph.

Proof. From Lemma 2 it follows that Invariant 1 holds
at the end of FindDensest. Moreover, it either holds at the
end of Add or FindDensest is executed right after that, so
as to maintain such an invariant. Therefore, at any point
in time the subgraph Ḡ found by Main has density at least
β

1+ε
, while from Lemma 2 it follows that ρO < 2(1 + ε)β.

This proves the approximation guarantee.

The following lemma is useful for analyzing the amortized
cost of the algorithm. Its proof is omitted for brevity and
deferred to the full version of the paper.

Lemma 3. At any point in time, let n be the number
nodes in the current graph G = (V,E). The total number

of FindDensest calls in the algorithm, up to this point is
O(log(n)ε−1).

The following theorem shows that the algorithm has amor-
tized cost O(log2(n)ε−2) per edges in the graph.

Theorem 4. At any point in time, let n and m be the
number of nodes and edges in the current graph G = (V,E),
respectively. The total number of operations of the algo-
rithm, up to this point, is O(m log2(n)ε−2) while the algo-
rithm requires O(m+ n) space.

Proof. Notice that to implement the algorithm, it is suf-
ficient to store the current graph and some additional book-
keeping information of cost O(n) (we do not need to store
the sets St’s explicitly but only which is the last set in which
each node is present).

We now bound the total number of operations performed
byMain. We start by proving that the total number of oper-
ations executed between two consecutive calls to FindDensest
is O(m log(n)ε−1). Consider any call to FindDensest and
any node v. Let t and t̂ be such that v belongs to some set
St \ St+1 right after such a call and v belongs to St̂ \ St̂+1

right before the next call to FindDensest. By construc-
tion, it must be t̂ ≥ t. Moving a node from St to St̂ re-
quires at most δG(u) · (t̂ − t) operations, while the num-
ber of sets St’s is at most dlog1+ε(n)e. Therefore, the total
number of operations between two consecutive calls to the
procedure FindDensest is at most

∑
v∈V δG(v) log1+ε(n) =

O(m log(n)ε−1). From Lemma 3, it follows that there are
O(log(n)ε−1) calls to FindDensest, with each of them re-
quiring O(m log(n)ε−1) operations.

This concludes the proof.

Handling node insertions. In this section we have as-
sumed for simplicity to know the set V of all nodes that
will appear in the graph. This is not necessary as simple
changes are sufficient to adapt the algorithm to the general
case. Each time a new node v is introduced, we first assign
it to the set S0 (a node of degree 0 is always removed at the
first iteration), then the algorithm proceed as usual. Notice
as well that we use the cardinality of V only to determine
the threshold k = dlog1+ε(|V |)e for the maximum number of
sets St’s. It is easy to see that as |V | can only grow we can
simply keep track of the current cardinality of V and always
use the current value when necessary. The monotonicity of
|V | ensure that the algorithm remains consistent and that
the theorems continue to hold.

4.3 Fully dynamic case
In this section, we show how to adapt the previous algo-

rithm to the fully dynamic model with both adversarial edge
insertions and random removals as described in Section 3.
For this case we provide an approximation algorithm that
handles both operations in amortized poly-log time, in the
size of the graph and the number of operations, with high
probability. We stress that the approximation guarantees
of our algorithm holds for adversarially chosen edge inser-
tions and removals. We rely on the randomness of removals
only for showing the amortized complexity bounds. In the
experimental section (Section 5.2), we conduct an extensive
empirical evaluation showing the effectiveness of our algo-
rithm in the sliding window model as well.

We start from an initial graph G = (V,E). We first as-
sume that the set V of all nodes appearing in the graph is



known in advance, while we show later on in this section
how to relax this requirement. Let A be the total number of
(possibly repeated) edges that are inserted in the graph, i.e.
A counts both the edges in the initial graph and the edge
addition operations. Let R be the number of edge deletions
executed. We have that A+R = O(A). We will bound the
total cost of this sequence of operations in the probability
space defined by the random choices of the edge removals.
We say that an event happens with high probability (w.h.p.)
if it happens with probability ≥ 1− A−c for some constant
c > 1.

The main idea of our algorithm is to lazily maintain a data
structure (the sets St’s presented in the previous section)
from which we can extract a dense subgraph, while requiring
a small number of operations (on average). To this purpose
we maintain a slightly weaker invariant (Invariant 2) which
is defined as follows:

Invariant 2. Given β, ε > 0 and the current graph G =
(V,E), the nodes in V are organized as a collection of sets
S0, . . . , Sk, k = dlog1+ε(n)e, where

• S0 = V ;

• For t = 0, . . . , k−1, St+1 ⊆ St and if v ∈ St has degree
larger than or equal to 2(1 + ε)β in Gt = (St, E(St))
then v ∈ St+1;

• Sk = ∅.

Notice that this invariant is weaker than the previous one,
in that, we only require that high degree nodes in St are also
part of set St+1 (no condition is placed on the removal of low
degree nodes). Similar to the previous section, the sets St’s
are first defined as the ones obtained in the last call to Find
in FindDensest and then are later updated as described in
the algorithm.

Unfortunately, after many update operations such data
structure might become corrupted and must be reconstructed
from scratch by means of a costly procedure (FindDensest).
Our goal is to minimize the number of times that such a
costly procedure is executed. To this purpose we divide
the execution of the algorithm in rounds, with each round
containing all the operations required to maintain Invari-
ant 2 between two consecutive calls to the costly procedure
FindDensest. We say that a round is good if the total num-
ber of edge removal operations in the round is larger than
or equal to a threshold R∗, while it is bad otherwise. R∗ is
defined as follows:

R∗ :=
m0ε

6(1 + ε)2 log1+ε(|V |)
, (1)

where m0 is the number of edges in the graph at the begin-
ning of the round. Notice that R∗ might not be an integer.

The main intuition is that in good rounds the number of
maintenance operations is “justified” by a large number of
update operations, causing no issues in our amortized cost
analysis. We will then show that the bad rounds are not too
many with respect to the good ones.

Given a parameter ε > 0, our algorithm works with a
parameter ε′ = 2ε + ε2. The algorithm starts with round
1 where FindDensest is executed so to construct the sets
St’s. At round s, the execution of such a procedure starts
a new round s + 1. A counter R′ keeps track of the num-
ber of removals that have been been executed in the cur-
rent round so to be able to determine whether the current

Algorithm 5 MainFullyDyn (G = (V,E), ε)

ε′ ← 2ε+ ε2, R′ ← 0.
s← 1 // Begin round 1.
(β1, Ḡ)← FindDensest (G, 0, ε′).
Let S0, . . . , Sk be the sets computed by Find.
G̃ = (V, Ẽ)← G. //supergraph of G maint. for efficiency.
Let R∗ as in Equation 1, where m0 = |E|.
Output Ḡ.
while (true) do

Wait for update (Op, u, v), Op ∈ {Add,Remove}.
if Op = Add then

if R′ < R∗ then Ẽ ← Ẽ ∪ (u, v).
Rebuild← Add((u, v), (S0, . . . , Sk), G, βs, ε

′).
else

Rebuild← Remove((u, v), G, Ḡ, βs, ε
′).

R′ ← R′ + 1.
end if
if (Rebuild) then

if R′ < R∗ then
Let H ← Find (G̃, βs, ε

′)
if ρG(H) ≥ ρG(Ḡ) then Ḡ← H

end if
s← s+ 1. //begin round s+ 1.
(βs+1, H) ← FindDensest(G, ρG(Ḡ), ε′) (update

S0 . . . Sk as the sets computed by Find).

G̃ = (V, Ẽ)← G.
if ρG(H) ≥ ρG(Ḡ) then Ḡ← H.
Output Ḡ.
Let R∗ as in Equation 1, where m0 = |E|.
R′ ← 0.

end if
end while

round is good or bad. When a new edge is added to the
current graph, our algorithm executes the same algorithm
Add described in the previous section, while when an edge
is removed our algorithm executes the algorithm Remove
(see Algorithm 6 for a pseudo-code). In either case, Invari-
ant 2 is maintained. Both algorithms return a flag Rebuild
signaling whether the St’s must be rebuilt, in which case,
FindDensest is executed. See Algorithm 5 for a pseudo-
code of MainFullyDyn. For efficiency reasons we maintain
a graph G̃ which is a super graph of the current graph.

We now prove the approximation guarantees of our algo-
rithm.

Theorem 5. The algorithm always maintains a 2(1+ ε)6

approximation of a densest subgraph.

Proof. Notice that algorithm Remove ensures that any
time we have a set S of density ρ(S) ≥ β

(1+ε′)2 . Furthermore

by Invariant 2 we know that if we execute Find (G, β, ε′) on
the current graph all nodes are removed in at most log1+ε′(|V |)
iterations. Hence, by Lemma 2 it follows that ρO < 2(1+ε′)β
and this proves the approximation guarantee 2(1 + ε′)3 =
2(1 + ε)6.

We now state the following theorem that proves that our
algorithm has amortized cost O(log(A) log2(n)ε−2) for edge
addition and O(log(A) log3(n)ε−4) for edge removal, w.h.p.

Theorem 6. For any ε > 0, at any point in time, let
A and R be the number of edge insertion and deletion op-
erations. The total number of operations of the algorithm
is w.h.p O

(
A log(A) log2(|V |)ε−2 +R log(A) log3(|V |)ε−4

)
,

while the algorithm requires O(n+m) space.



Algorithm 6 Remove(u, v,G(V,E), Ḡ, β, ε > 0)

Ensure: ρ(Ḡ) ≥ β
(1+ε)2

after removing (u, v), if this is not

true return a flag Rebuild = true signaling that the dens-
est subgraph must be recomputed.

E ← E \ {(u, v)}.
Update degrees of u and v.
if ρ(Ḡ) < β

(1+ε′)2 then
return true

else
return false

end if

Proof of Theorem 6
Our proof strategy for Theorem 6 is the following. We
analyze separately the case of bad (R′ < R∗) and good
(R′ ≥ R∗) rounds. In the former case we show that the
density of the densest subgraph is unlikely to be affected sig-
nificantly, so we can use similar arguments to the ones used
in the previous subsection. In the latter case, we amortize
the cost of the re-computation of the densest subgraph using
the large number of edge update operations.

The next lemma shows that many random edge removals
are required to decrease significantly the density of any given
subgraph. Such a lemma is used to prove that, we cannot
have many (more than poly-log) consecutive bad rounds,
w.h.p. Finally, we will use this result to bound the average
cost of each operation.

Lemma 4. Given an undirected graph G = (V,E), let H
be a subgraph of G while let G′ be a graph obtained by remov-
ing R′ edges uniformly at random from G, with 0 ≤ R′ < R∗.
If ρG(V (H)) ≥ β then, ρG′(V (H)) ≥ β

(1+ε)
, with probability

at least p = 1− (6 log1+ε(|V |))−1.

Proof. The probability of removing an edge from H is

smaller than |E(H)|
|E(V )|−R∗ . Let X be the random variable that

counts the number of edges removed from H. We can bound
E[X] as follows:

E[X] ≤ R∗ |E(H)|
|E(V )| −R∗ ≤

|E(H)|ε
6(1 + ε) log1+ε(|V |)

Furthermore, note that |E(H)| ≥ β|V (H)| and that in or-
der to decrease the density ofH to β

(1+ε)
at least β|V (H)|(1−

1
1+ε

) = β|V (H)|ε
1+ε

edges must be removed.
Hence, from Markov inequality it follows:

P

(
X >

β|V (H)|ε
1 + ε

)
≤ E[X]

β|V (H)|ε
1+ε

≤ 1

6 log1+ε(|V |)
.

Hence, with probability at least 1 − 1
6 log1+ε(|V |)

the graph

H has density ≥ β
1+ε

.

We now state a lemma is deferred to the full version of
the paper

Lemma 5. For any bad round s of MainFullyDyn, βs+1 ≥
βs(1 + ε) with probability at least 1 − 1

3 log1+ε(|V |)
, indepen-

dently of the previous rounds.

We now prove the following lemma that can be used to
show that we cannot have many consecutive bad rounds.

Lemma 6. Let ε > 0. At any point in time during the ex-
ecution of MainFullyDyn, let A be the total number of edge
additions. There are less than O(log(|V |) log(A)ε−1) con-
secutive bad rounds, with high probability.

Proof. Consider an arbitrary sequence of k consecutive
bad rounds s1, . . . , sk, with k ≥ 6dlog1+ε(|V |) log3/2(A)e.
Let p = 1

3 log1+ε(|V |)
and t = 2dlog1+ε(|V |)e. Let βi be the

value of β at round si. From Lemma 5 and union bound,
it follows that the probability that there is i < t such that
βi+1 < (1 + ε)βi is at most p · t < 2

3
. Therefore, with proba-

bility at least 1− 2
3

3 log3/2(A)
= 1−O(A−3) there are t con-

secutive bad rounds si+1, si+2, . . . , si+t, with i+ t < k such
that βj+1 ≥ (1 + ε)βj for any j ∈ [i+ 1, i+ t− 1]. However,
by definition the βj ’s are bounded by |V | and therefore can-
not increase by a factor of (1 + ε) more than log1+ε(|V |) < t
times. From the above observations, it follows that if there
are more than k consecutive bad rounds then the latter con-
dition is not satisfied with probability at least 1− O(A−3).
From the fact that there are at most A+R = O(A) rounds
in total and from a union-bound argument it follows that
throughout the execution of the algorithm there are at most
6dlog1+ε(|V |) log3/2(A)e = O(log(|V |) log(A)ε−1) consecu-
tive bad rounds, w.h.p.

We can now provide a proof sketch of the main theorem.
The proof is omitted for brevity and deferred to the full
version of the paper.

Proof Sketch of Theorem 6. Similarly to the algorithm
in the previous section, it is easy to see that the algorithm
can be implemented in space O(n+m) (for storing the nodes
and edges in the current graph) plus some additional space
for bookkeeping information of cost O(n).

We now bound the amortized cost of our algorithm. From
Lemma 6, it follows that at any point in time we can parti-
tion (w.h.p.) all rounds of MainFullyDyn in super-rounds,
such that every super-round, except possibly the last one,
contains O(log1+ε(|V |) log(A)) consecutive bad rounds fol-
lowed by one final good round, while the last super-round
containsO(log1+ε(|V |) log(A)) consecutive bad rounds which
might or might not be followed by one final good round. We
prove our bound on the amortized cost for any such super-
round, which will prove the desired claim.

We first consider any super-round S containing both good
and bad rounds. Let a and r be the total number of edge
additions and deletions in S. By using similar arguments to
the ones in the proof of Theorem 4 and using the fact that we
have at most O(log1+ε(|V |) log(A)) rounds in a given super-
round, it follows that the total number of operations per-
formed throughout S isO

(
(m0 + a+ r) log(A) log2(|V |)ε−2

)
,

where m0 is the number of edges at the beginning of S.
Let a′ and r′ be, respectively, the total number of addi-

tions and removals in the bad rounds of S, while let a′′, r′′

be the total number of additions and removals in the final
good round of S, respectively. We now use the fact that
in any good round a large number of removal operations is
performed.

By definition of good round, r′′ ≥ R∗ ∈ Θ
(

m′ε
log1+ε(|V |)

)
,

where m′ is the number of edges at the beginning of the good
round. Using the fact that m′ = m0 +a′−r′ and after some



Graph |V | |E| Time
DBLP 938,609 4,541,961 1959-2014

Patent (Co-Aut.) 1,162,227 3,660,945 1975-1999
Patent (Cit.) 2,745,762 13,965,410 1975-1999

LastFm 681,387 43,518,693 2005-2009

Yahoo! Answer 2,432,573 1.21× 109 2006

Table 1: Properties of the dynamic graphs analysed.
|V |, |E|, refer to the number nodes appearing in the
graph and number of edge additions, respectively.
Time indicates when evolution took place.

simple algebra, we derive m0 ∈ O
(
r log(|V |)

ε2

)
. Therefore, we

can bound the total number of operations CS performed in
the super-round S as follows

CS = O
(
(m0 + a+ r) log(A) log2(|V |)ε−2)

= O
(
a log(A) log2(|V |)ε−2 + r log(A) log3(|V |)ε−4) .

By summing up over all super-rounds we prove the desired
claim. Notice that if S does not contain any good round then
there is an additional term O

(
(A+R) log(A) log2(|V |)ε−2

)
.

As this might happen only for the last super-round this does
not change the asymptotic cost.

Handling node insertions. Similar consideration of the
previous section holds in this context. When a node is added
we can assign it to the first set S0 only. Moreover, if we
define V as the set of all nodes ever inserted in the graph,
then |V | is again monotone increasing. So the algorithm
remains consistent.

5. EXPERIMENTS
In this section, we provide an extensive experimental eval-

uation of our algorithms on large real-world graphs some
of which contain more than one billion edges. From each
dataset, we extracted an undirected graph with each edge
being associated with a timestamp.

Datasets & Experimental setup.
We start by describing our publicly available datasets. See

Table 1 for a summary of their features.

DBLP. The DBLP graph is obtained from a snapshot [1]
of a coauthorship graph, constructed from 2.5 million sci-
entific publications in computer science published between
1959 and 2014. Nodes in this graph represent authors, while
an edge with timestamp t between two nodes indicates that
the corresponding authors published an article in year t. To
take into account only strong scientific collaborations, we
restrict our attention to papers with at most 10 authors.

Patent (Co-Aut.) & Patent (Cit.). The Patent (Co-
Aut.) & Patent (Cit.) graphs are obtained from a dataset [22]
containing about 2 million U.S. patents granted between ’75
and ’99. In the Patent (Co-Aut.) graph, nodes represent
inventors while an edge with timestamp t connects two in-
ventors of the same patent granted in year t. In the Patent
(Cit.) graph, nodes represent patents while an undirected
edge with timestamp t connects two patents if one received
a citation from the other in year t.

LastFm. The LastFm graph is obtained from a dataset [2,
15] of song listenings of last.fm users. The dataset contains
about ≈ 20 million listenings of ≈ 1 million songs from ≈
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Figure 1: Evolution of the densest subgraph — edge
addition only.

1000 users. In this graph, nodes represent songs while an
edge with timestamp t connects two songs if they where
both listed by the same 3 or more users in the same day t.

Yahoo! Answer. This graph is obtained from a sample of
≈ 160 million answers to ≈ 25 millions questions in Yahoo!
Answer [3]. From this dataset, we derived an undirected
graph where nodes represent users and an edge connects
two users at time max(t1, t2) if they both answered the same
question at times t1, t2 respectively. We removed 6 outliers
questions with more than > 5000 answers.

Experimental setup. All our experiments have been run
using in-house developed C++ code compiled with g++ and
-O4 optimization option. We used a machine equipped with
Intel(R) Xeon(R) E7-4870 CPUs with 2.40GHz clock and
approximately 50GB of main memory. Each run employs a
single core of the machine while using less than 10% of the
available main memory.

5.1 Edge insertion only
In this subsection, we show our results for the case with

edge additions only. First, we show the evolution over time
of the properties of the densest subgraph for some of our
datasets, when edges are introduced according to their times-
tamps. Then, we study the tradeoff between running time
and accuracy of our algorithm as a function of our accu-
racy parameter ε. Finally, we consider the natural variant
of state-of-the-art approaches for static densest subgraph
computation, where a densest subgraph is recomputed ev-
ery time k update operations are performed. Our experi-
mental evaluation shows that our dynamic algorithm is up
to 3 orders of magnitude faster than such a natural variant.

Evolution of the densest subgraph.
In our first experiment, edges are first sorted according to

their timestamps in a non-decreasing order. Then, starting
from an empty graph they are added one at a time2 while
our algorithm maintains an approximate densest subgraph

2Notice that in our experiments we ignore trivial update
operations (e.g. inserting an edge already present).
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Figure 2: Trade-offs between the average updated
time in microseconds and the density of the densest
subgraph found— edge addition only. Notice how
in all the graph the average update times are in the
hundreds of microseconds at most. Smaller the ε
values results in higher update time and densities.

of the current graph. Figure 1, illustrates the evolution of
the density as well as the size of the densest subgraph found
by our algorithm over time. For the DBLP and Patent graph
the time is in years, while for LastFm is in days.

For this experiment we used parameter ε = 0.01 which
provides a ≈ 2.04-approximation. Notice how the density
of the densest subgraph grows in a stepwise fashion, which
is expected as the algorithm does not recompute the dens-
est subgraph unless a sufficiently larger one emerges. The
largest densest subgraphs found in our datasets range in size
between ≈ 60 and ≈ 4000 nodes, while having density be-
tween ≈ 5 and ≈ 400. In particular we observe very dense
subgraphs for our LastFm dataset where node represents
songs.

Efficiency accuracy trade-offs. We now turn our atten-
tion to the tradeoff between running time and density of the
densest subgraph as a function of our accuracy parameter ε.
Figure 2(a) shows average time per update in microseconds
for our algorithm. We can observe that on average a few
hundreds of microseconds are sufficient for handling any up-
date. This implies that our algorithm can handle between
≈ 7000 and ≈ 80000 edge update operations per second
with very small error (ε = 0.01). These results highlight
that our algorithm can be employed effectively in a very dy-
namic context. Figure 2(b) illustrates how the density of
the densest subgraph is affected by our accuracy parame-
ter ε. Notice that, as expected, smaller values of ε results
in denser subgraphs. However, our algorithm seems to find
very dense subgraphs even for relatively large values of ε
suggesting that our algorithm finds denser subgraphs than
those predicted by our worst case analysis.

Comparison with static algorithms. To the best of
our knowledge, no approximation algorithm has been de-
signed to efficiently maintain a densest subgraph in a dy-
namic graph, while requiring time o(|V | + |E|) per update
(i.e. without recomputing the solution from scratch every
time). Therefore, we study a natural variant of the algo-
rithm proposed by Bahmani et al. [10]), where the densest
subgraph is recomputed every time K update operations are
performed. As it is not clear how to fix K a priori we con-
sider several different values for K. Notice that, even though
the algorithm presented by Bahmani et al. [10] provides a
2(1 + ε) approximation, recomputing the densest subgraph
every K update operations does not give any meaningful
approximation guarantee. This follows from the fact that
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Figure 3: Comparison between our approach and re-
computing the densest subgraph every K updates
with a static graph algorithm. Notice that both
plots are in log scale. Our algorithm outperforms
static graph algorithms by orders of magnitude even
when allowed to run very infrequently and output
up to 80 times more dense clusters.

densest subgraphs might emerge very quickly, before the
densest subgraph is recomputed. Indeed, this is what we
observe in our experimental evaluation.

Figure 3(a) shows the comparison of the running time of
our algorithm vs that of Bahmani et al. [10]. Both algo-
rithms are set to provide an approximation guarantees of
2(1 + ε)2 with ε = 0.01. It is possible to see that our algo-
rithm is up to 3 orders of magnitude faster than the one that
recomputes the densest subgraph periodically, even when
this is done every 100000 updates. Times in Figure 3(a)
are in microseconds per update. For the dataset LastFm
and Patent (Cit.) with K = 10000 we stopped the com-
putation of the algorithm after few hours so the result is a
lower-bound of the total time required.

We remark that an average update time in the order of
tens of milliseconds is far from being practical. As an illus-
trative example, if each update requires 10 milliseconds, the
analysis of datasets with one billion updates would require
at least 100 days. Hence, it is crucial to design algorithms
with an update time in the order of tens to hundreds of
microseconds or less to scale to such datasets.

Moreover, recomputing the subgraph periodically may also
lead to poor results, because, dense subgraphs that emerge
and disappear quickly might be missed. This is illustrated
in Figure 3(b), showing that the naive approach might find
subgraphs that are up to ≈ 80 times less dense than the
one found by our algorithm (essentially providing no guar-
antees in terms of accuracy). In comparison our algorithm,
is guaranteed to find a subgraph that is always within 2.04
factor from the optimum. In Figure 3(b), we report only the
results for the runs that completed in the allotted time.

5.2 Fully dynamic case
In this section, we evaluate our fully dynamic algorithm

in datasets containing both edges additions and removals.
To show the viability and effectiveness of our approach, we
evaluate our algorithm in the sliding window model, where
a sliding window of the most recent edges (say in the last
hour or day) defines the current graph. Over time new recent
edges might be added to the current graph, while old ones
are being removed. This might results in high rate update
operations. The dynamic graphs in this section are obtained
in the following way. For DBLP, and Patent (Co-Aut.) &
(Cit.) we keep in the sliding window the edges generated



 0

 1

 2

 3

 4

 5

 6

 7

 1970  1975  1980  1985  1990  1995  2000  2005  2010

 20

 40

 60

 80

 100

D
e
n
s
it
y

S
iz

e

Time

Evolution Densest Subgraph

Density
Size

(a) DBLP

 0

 5

 10

 15

 20

 25

 30

 35

 1975  1980  1985  1990  1995

 0

 50

 100

 150

 200

 250

 300

D
e
n
s
it
y

S
iz

e

Time

Evolution Densest Subgraph

Density
Size

(b) Patent (Cit.)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  200  400  600  800  1000

 0

 100

 200

 300

 400

 500

 600

 700

 800

D
e
n
s
it
y

S
iz

e

Time

Evolution Densest Subgraph

Density
Size

(c) LastFm

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  5e+08  1e+09  1.5e+09  2e+09  2.5e+09

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

D
e
n
s
it
y

S
iz

e

Time

Evolution Densest Subgraph

Density
Size

(d) Yahoo! Answer

Figure 4: Evolution of the densest subgraph — fully
dynamic case.

in the last 5 years, while for LastFm we keep the edges
generated in the last 30 days. For our larger graph Yahoo!
Answer, instead we keep in the sliding window the last 10
millions edges. In case of a tie the corresponding edges are
sorted randomly. We experimented with different sizes for
the sliding windows, leading to very similar results (which
are omitted for space issues).

Evolution of the densest subgraph. Figure 4 shows
the evolution of the densest subgraph in the sliding window
model. Notice that in the case of LastFm and Yahoo! An-
swer both size and density varies very quickly, while for the
other graphs we observe less pronounced variations. This
is expected as, for instance in Yahoo! Answer, the appear-
ance of new popular topic can trigger the rapid emergence of
very large (albeit shortly lived) dense communities of users.
In the context of co-authorships graphs, instead, we clearly
expect slower variations in the community structure (intro-
ducing an edge requires the authorship of a research paper).
In our co-authorhsip graphs (DBLP and Patent) we observe
a clear trend of densification of the communities over time,
which is consistent with previous observations [30]. How-
ever, notice that in our work we are able to study for the
first time the evolution of the density of the densest sub-
graphs (as opposed to the density of the whole graph), which
is possible thanks to the ability of our algorithm to process
efficiently very large dynamic graphs. This pattern is less
clear in LastFm and Yahoo! Answer but our analysis of
these graphs is limited to significantly smaller periods of
times, with other transient phenomena possibly prevailing.

These results highlight that our algorithm can be a valu-
able tool in studying the evolution of communities in a social
network over time.

Efficiency accuracy trade-offs. Figure 5(a) shows the av-
erage time per update in microseconds of our algorithm as a
function on the parameter ε for some our datasets. We can
consistently observe that a densest subgraph can be main-
tained within hundreds of microseconds per update on av-
erage. This is the case also for our larger datasets requiring
billions of updates, allowing the computation of densest sub-
graphs in evolving graphs at these scales.
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Figure 5: Trade-offs between the average updated
time in microseconds and the density of the densest
subgraph found— fully dynamic case.

Figure 5(b), instead, shows how the density of the dens-
est subgraph found is affected by our accuracy parameter
ε. Similar considerations of the insertion only graph section
holds in this case.

By comparing Figure 4 and Figure 5(a), we observe higher
update times in the most highly dynamic datasets, such as
LastFm and Yahoo!, Answer) as opposed to DBLP, Patent.
This is expected as frequent changes in the density of the
densest subgraph requires the frequent executions of the
costly FindDensest procedure. Notice, however, that our
algorithm scales very well in very large and highly dynamic
datasets like Yahoo! Answer.

6. CONCLUSIONS AND FUTURE WORKS
We studied the problem of maintaining an approximate

densest subgraph problem in dynamic graphs. We give the
first algorithm that maintains a constant factor approxi-
mation when edges are added adversarially and removed
randomly, while ensuring amortized cost being poly-log per
update on average. Our extensive experimental evaluation
shows that our algorithm can cope with more than one bil-
lion of update operations within a few hundreds of microsec-
onds per update, on average.

An interesting direction for future work is to adapt into a
dynamic environment the algorithm developed in [11] for
finding several dense subgraphs with limited overlap. It
would also be interesting to improve the approximation fac-
tor of our algorithm by using a technique similar to the one
presented in [8], as well as, to design algorithms that work
under adversarial edge deletion.
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