
Submodular Optimization Over Sliding Windows

Alessandro Epasto Silvio Lattanzi Sergei Vassilvitskii Morteza Zadimoghaddam
Google

New York, NY 10011
{aepasto, silviol, sergeiv, zadim}@google.com

ABSTRACT

Maximizing submodular functions under cardinality constra-
ints lies at the core of numerous data mining and machine
learning applications, including data diversification, data
summarization, and coverage problems. In this work, we
study this question in the context of data streams, where
elements arrive one at a time, and we want to design low-
memory and fast update-time algorithms that maintain a
good solution. Specifically, we focus on the sliding window
model, where we are asked to maintain a solution that con-
siders only the last W items.

In this context, we provide the first non-trivial algorithm
that maintains a provable approximation of the optimum us-
ing space sublinear in the size of the window. In particular
we give a 1/3 − ǫ approximation algorithm that uses space
polylogarithmic in the spread of the values of the elements,
Φ, and linear in the solution size k for any constant ǫ > 0.
At the same time, processing each element only requires a
polylogarithmic number of evaluations of the function itself.
When a better approximation is desired, we show a different
algorithm that, at the cost of using more memory, provides a
1/2−ǫ approximation, and allows a tunable trade-off between
average update time and space. This algorithm matches the
best known approximation guarantees for submodular opti-
mization in insertion-only streams, a less general formulation
of the problem.

We demonstrate the efficacy of the algorithms on a num-
ber of real world datasets, showing that their practical per-
formance far exceeds the theoretical bounds. The algorithms
preserve high quality solutions in streams with millions of
items, while storing a negligible fraction of them.

Keywords

submodular maximization; sliding-window streams; stream-
ing algorithms

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC-BY-NC-ND 2.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052699

.

1. INTRODUCTION
Providing concise, timely, and accurate summaries is a

critical task facing many modern data driven applications.
In myriad scenarios, ranging from increasing diversity [2]
to influence maximization [19], this problem can be viewed
as optimizing a submodular function subject to cardinal-
ity constraints. Capturing the property of “diminishing re-
turns,” submodular functions can almost be seen as a silver
bullet in data mining and machine learning: they are gen-
eral enough to model many practical situations, yet allow
for simple, and efficient optimization algorithms.

The classical algorithms for submodular function opti-
mization [26] were developed for the batch setting. The
past decade, however, has seen an increased focus on data
streams: situations where the input arrives one element at a
time, rather than being presented all at once. At the cost of
sacrificing some accuracy, data streams allow for very fast
updates, with the majority of algorithms taking only poly-
logarithmic time to produce an answer after processing each
element. Even as data sizes grow into billions and trillions
of items, data stream algorithms remain fast and efficient.

It is therefore not surprising that submodular function
optimization on data streams has received a lot of atten-
tion in the past few years [4, 20]. However, previous work
has only focused on the insertion-only (or incremental) case
where items are only added to, and never removed from the
stream. This does not capture the recency constraint, often
prevalent in practical applications, where we would like to
optimize over the latest data, rather than all of the items
seen during the duration of the stream. This is usually cap-
tured by considering an optimization over the last W items
in the stream in what is known as the sliding window model,
introduced by Datar et al. [14]. This model is more general
and challenging than the insertion-only case, as the algo-
rithm needs to take into account the items that disappear
from the sliding window as time passes. In this work we
study, for the first time, the problem of optimizing submod-
ular functions in the sliding windows model, and develop
fast and memory-efficient algorithms with provable approx-
imation guarantees.

1.1 Applications
Before we proceed, we give two examples of submodular

function maximization that have wide applications in prac-
tice: maximum coverage and active set selection. We will
evaluate our algorithms on these scenarios in Section 6.

Maximum coverage. The maximum coverage problem
is a well known NP-Hard problem: given many sets over the

same ground set, U , select k of them that have the largest
union, or jointly “cover” as many elements as possible. In
the sliding window formulation, the sets arrive one at a time,
and we can only consider the W most recent arrivals.

This problem has numerous applications. For instance,
the sets might represent content available in an online service
(e.g. videos, items to purchase, ads, check-ins in a location-
based system). Each set has an associated subset of inter-
ested users, our goal is to select k sets to maximize the total
number of people interested in at least one item. As rele-
vance of items waxes and wanes, recency is a key factor, and
items that first appeared long ago, are no longer considered
material1.

In other examples, the sets in the input might repre-
sent topics (or labels, tags, etc.) covered by a given item,
and again we are interested in showing a limited number of
items so that we cover as many topics of interest as possi-
ble. Other applications of maximum cover in insertion-only
streams have been discussed, for instance in [27]. In our
experiments in Section 6 we show two simple applications
of max coverage based on publicly-available data: main-
taining a set of recently active points of interest using the
Gowalla location-based social network check-ins, and ana-
lyzing DBLP co-authorship data to extract a set of recent
researchers covering as many fields as possible.

Active set selection. Another application of submod-
ular maximization lies in the area of data summarization. In
this context we want to extract a representative set of k el-
ements from an arbitrary set of items. This setup has many
applications in explorative data analysis and visualization,
as well as, in speeding up machine learning methods. For
instance, in an online system receiving a stream of event
updates (e.g. possible security alerts, news stories, etc.) we
want to keep track of k informative events to be shown for di-
agnostic and visualization purposes, or for conducting more
in depth analysis.

Here, too, we only want to present recent items from the
stream, as older events are less relevant. A concrete instan-
tiation of this problem is that of active set selection with
Informative Vector Machines (more details available in [4]),
which consists of selecting a set of k items which maximize
a submodular function defined on the restricted kernel ma-
trix over the selected items. More precisely let KS,S be
the restricted kernel matrix over the items s1, . . . s|S| ∈ S
i.e. KS,S(i, j) = K(si, sj) where K(si, sj) is the similarity of
items i and j according to some symmetric positive definite
kernel function K. In the experimental evaluation, we use
the settings of [4]: the items are points in a Euclidean space,
K = exp(−‖si − sj‖22/0.752), and the goal is to find S that
maximizes the log-determinant: f(S) = 1

2
log det(I+KS,S),

where I is the identity matrix of size |S|.

1.2 Our Contributions
In this work we give the first algorithms for monotone

submodular function optimization subject to a cardinality
constraint over sliding windows, prove bounds on their per-
formance, and empirically demonstrate their effectiveness.
Note that algorithms designed for insertion-only streams or
off-line settings (e.g. the greedy algorithm) cannot be read-

1We note that in practice, more nuanced variations of this
basic problem are often used, for example assigning weights
to users, and allowing partial coverage of users, all of which
can be cast as submodular maximization.

ily applied in the sliding window case, as items are removed
from the window at each update. A näıve application of any
such method would require at least Θ(W) time and space
to process each new item for a window of size W , which is
prohibitive. In contrast, we show that sublinear space and
time are sufficient:
• In Section 4 We give a 1/3 − ǫ approximation algo-

rithm that uses memory O(k log2(kΦ)/ǫ2) and needs
only O(log2(kΦ)/ǫ2) calls to the submodular function
to process each element. (Here Φ is the ratio be-
tween maximum and minimum values of the submod-
ular function, see Section 3 for details.) The space and
time requirements are optimal up to polylogarithmic
factors.
• We then give an algorithm that achieves a better ap-

proximation (1/2− ǫ), at the cost of slower processing,
and give a trade-off between update time and total
space used by the algorithm (Section 5). This algo-
rithm matches the approximation guarantees of the
best known insertion-only algorithm [4].
• We describe practical considerations used to further

improve the runtime of the algorithm in Section 6.1.
• In Section 6.3 we evaluate our algorithms on real world

datasets, and empirically demonstrate their accuracy
and scalability.

Finally, we note that one challenging open problem in the
sublinear algorithm literature is to understand the relation-
ship between different streaming models (see the list of Open
Problems in Sublinear Algorithms [1]). In this context, our
results are a significant contribution toward the solution of
the problem for submodular functions.

2. RELATED WORK
The two lines of research that are most related to this

work are the literature on submodular optimization and that
on sliding windows streams. We briefly describe the most
relevant results in each area.

Submodular optimization. The past decade has seen
significant growth in applications of submodular optimiza-
tion in multiple data mining and machine learning scenar-
ios. The diminishing returns property captures the prop-
erties necessary to model the challenging task of selecting
representatives among massive amounts of data. These rep-
resentatives are used as seeds in influence maximization [19]
and information diffusion networks [6], cluster centers in ex-
emplar based clustering [17], informative vectors in active
set selection [25], diverse sets in coverage problems [2], and
in document summarization [22].

The classic solution for submodular optimization with car-
dinality constraints is the well-known greedy algorithm in-
troduced by Nemhauser et al. [26]. After this seminal work a
lot of attention has been paid to designing faster algorithms
for various formulations of submodular optimization [4, 5,
21, 24]. The most relevant work for us is [4] where Badani-
diyuru et al. introduce the first efficient streaming algorithm
for submodular optimization. Specifically, for the problem
of monotone submodular function optimization subject to a
cardinality constraint Badanidiyuru et al. [4] give a 1/2− ǫ
approximation while using memory O(k log(k)ǫ−1) for any
ǫ > 0. In this paper we build on the techniques introduced
in that paper to design our algorithms.

Streaming on sliding windows. The sliding window
model has been introduced by Datar, Gionis, Indyk and

Mowani in [14]. After its introduction the model received
a lot of attention [8, 9, 10, 18, 28]. An important concept
in this area of research is the concept of Smooth Histograms
introduced in [9] by Braverman and Ostrovsky. Our 1/3− ǫ
approximation algorithm can be seen as an extension of the
Smooth Histograms for Submodular functions. To the best
of our knowledge no previous work has addressed the prob-
lem of submodular maximization in the sliding window set-
ting with approximation guarantees.

Concurrently and independently of our work, Chen et
al. [11] showed other results on submodular maximization
problems in the sliding windows. They achieve a 1/4-ap-
proximation algorithm for monotone submodular maximiza-
tion with cardinality constraints for which we achieve a 1/2-
approximation algorithm. They also provide results for other
variants of submodular maximization with matroid constraints
that not studied in this paper.

3. PRELIMINARIES
Let V be a ground set of elements. A function f : 2V →

R
≥0 is said to be submodular, if for all sets S ⊂ T ⊂ V and

all elements v 6∈ T ,

f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T).

In other words, the additional benefit of element v is no
larger when added to T ⊇ S. To simplify notation, for an
element v ∈ V , and set S ⊂ V , let

f ′
S(v) = f(S ∪ {v})− f(S),

denote the incremental value of adding element v to set S.
A submodular function f is monotone, if for any S ⊆ T ,

f(T) ≥ f(S). In this work we focus on optimizing monotone
submodular functions, subject to a cardinality constraint.
For k ∈ Z, let

fk(V) = max
S⊆V :|S|=k

f(S).

It is well known [26] that the simple greedy algorithm that
starts with S = ∅, and repeatedly adds the element v that
maximizes f ′

S(v) achieves a (1 − 1/e) approximation to the
optimum solution. Moreover this approximation ratio is the
best possible, unless P = NP.

Streaming Algorithms. Data streams are a common
way to design algorithms for very large datasets, see [3,
23] for a survey. In this setting, elements arrive one at a
time, and the goal of the algorithm designer is to maintain
a (nearly) optimal solution. A trivial approach is to store
all of the elements, and recompute the solution from scratch
every time. Such an approach is obviously inefficient, it re-
quires both large memory (to store all of the elements), and
large update time upon reading every element. In evaluat-
ing streaming algorithms, we will focus on these two metrics.
For a stream of length n, the goal is to find algorithms that
require sublinear memory, and update time, with the gold
standard having both be O(polylog(n)).

In this work, we are specifically interested in the slid-
ing window model over data streams. Consider a stream
v1, v2, Without loss of generality, we assume no item of
zero value is present, i.e. f({vi}) > 0, ∀i. Notice that such
items can be discarded without affecting the objective func-
tion value because such vi have zero incremental value to
every set. Let ∆ = maxv∈V f({v}) be the maximum value

of a set containing a single element in V . We also let

Φ =
maxv∈V f({v})
minv∈V f({v}) ,

be the ratio of maximum to minimum singleton values. Our
algorithms do not need to know Φ (it only appears in space
and computation upper bounds). Although we present the
algorithms as they need to know ∆, in Section 6.1 we show
how to relax this assumption without loss of generality.

Let W ∈ Z be the size of the sliding window. At each
point in time t ≥ W the active window, At, is the set
that contains the last W elements in the stream: At =
{vt−W+1, vt−W+2, . . . , vt}. For t < W , we let At = {v1, v2,
. . . , vt}. We are interested in computing sets S1, S2, . . . of
cardinality k such that at every time t, f(St) is within a
small constant factor of fk(At).
Similarly to streaming algorithms, an obvious approach is

to store the whole window At, and recompute the optimal
function on At at every time step. In this work we will
show how to compute an approximately optimal solution to
f using much less space, and with a much faster update
time.

4. A (1/3−ǫ)-APPROXIMATION ALGORITHM
In this section we present an algorithm that uses polylog-

arithmic memory and update time to compute a (1/3 − ǫ)-
approximation for the submodular maximization problem
with cardinality constraints.

A key ingredient in our analysis is the concept of Smooth
Histograms introduced by Braverman and Ostrovsky in [9].
Before presenting our solution, we briefly review the main
ideas presented in [9].

Smooth Histograms. The key idea behind smooth his-
tograms is to identify and maintain a subset of indices x1,
x2, . . ., xs, such that we only consider the intervals starting
at xi and ending at t. If we can prove that one of these inter-
vals leads to an approximately optimal solution, then we can
proceed by running s copies of a streaming approximation
algorithm in parallel, one starting at each index xi.

The main challenge is in identifying the right set of indices.
It is easy to show that simple ideas—for example evenly
partitioning the window into W/s equally spaced starting
points, or using reservoir sampling to maintain s random
starting points—do not work, in particular because the par-
titioning must depend on the value of the objective function
on the different sub-intervals.

Braverman and Ostrovsky show that for a well behaved
function, g, it is possible to maintain such a set of indices.
The high level idea is to look at the function values, and
insist that for any three successive indices, xℓ−1, xℓ, xℓ+1 the
value of g(xℓ+1, t) ≤ (1 − β)g(xℓ−1, t) for some constant
β. Here g(a, b) is the value of function g on the interval
[a, b] of elements, i.e. {va, va+1, . . . , vb}. In this case the
total number of indices is bounded by O(log1+β H), where
H is the ratio between the maximum and minimum values
of g. However, the approximation guarantees only hold for
a certain subset of functions. More precisely,

Definition 1. A function g is (α, β)-smooth if for all in-
dices a < b < c < d we have that:

(1− β)g(a, c) ≤ g(b, c) =⇒ (1− α)g(a, d) ≤ g(b, d).

Braverman and Ovstrovsky then show how to maintain poly-
logarithmically many indices to get a 1 − α approximation

1 Input: Stream of elements u1, u2, · · · , and δ;
2 Let m = ⌊log1+δ 2k∆/f(u1)⌋.
3 Let T = { f(u1)

2k
, (1+δ)f(u1)

2k
, (1+δ)2f(u1)

2k
, . . . , (1+δ)mf(u1)

2k
}.

4 forall the τ ∈ T do

5 Sτ ← ∅;
6 for t = 1, 2, · · · do
7 forall the τ ∈ T do

8 if f ′
Sτ

(ut) ≥ τ ∧ |Sτ | < k then

9 Add ut to Sτ

10 Solutiont ← maxτ f(Sτ);
Algorithm 1: StreamAllThresholds

to an (α, β) smooth function g. They further extend their
results to the setting when g cannot be computed exactly
in a streaming setting, but can only be approximated to a
factor of (1− ǫ). They adapt the analysis (Theorems 2 and
3 in [9]) to show that this results in a 1−5ǫ approximation.

Thus following their analysis, the resulting algorithm gives
non-trivial results only when ǫ < 1/5. In our problem, we are
interested in computing g = fk, and there exists no 1−ǫ ap-
proximation to estimate it. For the submodular maximiza-
tion problem with cardinality constraints, the best stream-
ing algorithm achieves a 1/2 approximation. Furthermore,
unless P = NP, there does not exist any algorithm that
achieves a better than 1 − 1/e approximation for submodu-
lar maximization with cardinality constraint [16]. Thus, we
cannot apply their techniques directly in our case.

Nonetheless, in the rest of this section we show how one
can use properties of submodular functions to adapt the
smooth histogram framework and obtain an efficient (1/3−
ǫ)-approximation algorithm.

4.1 An insertion only algorithm
Our first building block is a streaming algorithm that

can approximate fk efficiently. We present Algorithm 1
(named StreamAllThresholds), which is an extended version
of ThresholdStream algorithm introduced in [20] and that
uses similar techniques to the ones developed in [4]. Algo-
rithm 1 takes a stream of elements u1, u2, . . . (in our algo-
rithm this stream is often a sub-stream of the original stream
v1, v2, . . .). Given a value of δ > 0 which we will fix later,
we consider a set of m = ⌊log1+δ 2k∆/f(u1)⌋ thresholds,

T =

{

f(u1)

2k
,
(1 + δ)f(u1)

2k
, . . . ,

(1 + δ)mf(u1)

2k

}

.

For each threshold τ ∈ T , we maintain a feasible solution
Sτ which is initialized with the empty set. At time t, when ut

arrives, we add it to the solution if |Sτ | < k and f ′
Sτ

(ut) ≥ τ .
At any time t the current solution is the best among the
candidate solutions {S}τ , i.e. Solutiont = maxτ f(Sτ). The
pseudocode is shown in Algorithm 1.

We now give a lower bound on the performance of Al-
gorithm 1. For the analysis, let h(A) be the output of
Algorithm 1 on the stream A of elements.

Lemma 1. For any non-empty set B ⊆ A with |B| = k′ ≤
k, we have h(A) ≥ (1− δ) k

k+|B|
f(B). Equivalently, for any

1 ≤ k′ ≤ k, h(A) ≥ (1− δ) k
k+k′ fk′(A).

Proof. We first note that since fk′(A) is at least f(B)
by definition of fk′ , we only need to prove h(A) ≥ (1 −
δ) k

k+k′ fk′(A). By definition of ∆ and submodularity of f , we

have that fk′(A) ≤ k′∆, and therefore fk′(A)/(k + k′) is at
most ∆/2. One the other hand, we know fk′ is at least f(u1),
consequently, fk′(A)/(k+k′) is at least f(u1)/2k. Therefore
there exists some (1−δ)fk′(A)/(k+k′) ≤ τ ≤ fk′(A)/(k+k′)
in set T . We proceed to prove the claim for Sτ which lower
bounds the value of h(A).
There are two cases. If the size of |Sτ | is k, then:

h(A) ≥ f(Sτ) ≥ kτ ≥ (1− δ)kfk′(A)/(k + k′).

Otherwise, consider an element ut ∈ A\Sτ , which was not
selected. Then f ′

S
t−1
τ

(ut) < τ where St−1
τ is the subset of

elements of Sτ that arrive before time t. By submodularity,
we also have f ′

Sτ
(ut) < τ . We conclude by:

fk′(A)− f(Sτ) ≤
∑

x∈S∗

k′
(A)\Sτ

f ′
Sτ

(x) ≤ k′

k + k′
fk′(A),

where S∗
k′(A) is defined to be argmaxS⊆A:|S|=k f(S), and

the first inequality follows from the property of submodu-
lar functions, see for example Lemma 5 of [7]. Therefore,
f(Sτ) ≥

(

1− k′

/(k+k′)
)

fk′(A), which proves the claim.

4.2 The sliding window algorithm
Now we are ready to formulate our (1/3−ǫ)-approximation

algorithm. To solve our problem we introduce the concept
of Submodular Smooth Histograms inspired by the Smooth
Histograms in [9].

A Submodular Smooth Histogram consists of s indices
x1, x2, · · · , xs where the last index xs is equal to the current
time, t and represents the end of the sliding window. At
initialization, t = 1, and we set s = 1, x1 = 1.

During the algorithm we run s instances of our stream-
ing algorithm concurrently. Algorithm StreamAllThresholdsi
is responsible for processing the stream that starts with xi

and processes all elements after that unless we decide to ter-
minate the algorithm. At time t, when an element vt arrives,
it is processed by all s instances of StreamAllThresholds.
Furthermore we also initiate a new instance of StreamAll-

Thresholds that is responsible for the stream that starts with
vt. Formally, we increment s and set the new xs = t.
We now show how to update the indices x1, x2, · · · , xs to

keep s bounded while keeping a good approximation. Recall
that h(A) is the output of StreamAllThresholds on window A.
Abusing notation slightly, we also let h(a, b) be the value of
function h on the window that starts with index a and ends
with index b. We have two main operations to maintain
the indices. First, for any2 0 < i < s if index xi+1 has
expired: i.e. xi+1 < t −W + 1, then we remove index xi.
The first update helps us maintain the following invariant:
the start of the active sliding window will always remain
somewhere between the first two indices (or possibly equal
to one of them). Second, if for some 0 < i < s, we have
h(xi+2, t) ≥ (1 − β)h(xi, t), we remove index xi+1. Any
time an index is removed the corresponding algorithm is
terminated, and the other indices are shifted accordingly so
we always have a sequence of indices with no gaps. At any
point in time t the current solution Solutiont = h(x1, t) if

2It suffices to check only i = 1 instead of all 0 < i < s
since sliding the window by one unit at a time could only
introduce one more expired index. However, we leave the
for loop for all 0 < i < s to make it clear that at any time,
there will be at most one expired index (possibly the first
index) in the histogram.

1 Input: A stream of elements v1, v2, . . ., parameters

β, δ, Window size W ;
2 Initialize s← 0;
3 forall the t ∈ {1, 2, . . .} do
4 s← s+ 1;
5 xs ← t;
6 Initiate a new instance of Algorithm 1 that

processes the stream starting from xs;
7 // Keep at most one expired index.
8 forall the 0 < i < s do

9 if xi+1 < t−W + 1 then

10 Remove xi, terminate Algorithm 1 associated
with xi, and shift other indexes accordingly;

11 s← s− 1;

12 Pass vt to all s running instances of Algorithm 1;
13 // Delete indices that are no longer useful.
14 while ∃0 < i < s : h(xi+2, t) ≥ (1− β)h(xi, t) do
15 Remove xi+1, terminate Algorithm 1 associated

with xi+1, and shift the remaining indexes
accordingly;

16 s← s− 1;

17 if x1 = max(1, t−W + 1) then
18 Solutiont ← h(x1, t)
19 else

20 Solutiont ← h(x2, t)
Algorithm 2: Submodular Smooth Histograms Algorithm

x1 is not expired and h(x2, t) otherwise. In Algorithm 2
we give the pseudocode that maintains Submodular Smooth
Histograms.

We first show the main property of Submodular Smooth
Histograms which is maintained by Algorithm 2.

Lemma 2. For any time t and 1 ≤ i < s, at the end of

update operations at time t, we either have xi+1 = xi + 1
or there exists some t′ ≤ t such that h(xi+1, t

′) ≥ (1 −
β)h(xi, t

′).

Proof. Let t′ be the first time xi+1 becomes the suc-
cessor of xi in the smooth histogram. If this event oc-
curred due to the removal of some x′ that was between
xi and xi+1, the condition of the while loop ensures that
h(xi+1, t

′) ≥ (1 − β)h(xi, t
′). Otherwise, xi+1 became the

successor of xi when xi+1 was added to the smooth his-
togram. But we never remove the last index of the his-
togram, so the last index was equal to the previous end of
sliding window xi+1 − 1, therefore xi = xi+1 − 1.

We are ready to show that with a judicious choice of δ
and β, Algorithm 2 is a (1/3− ǫ)-approximation algorithm.

Theorem 1. For any ǫ > 0, Algorithm 2 with β = δ =
ǫ/2 is a (1/3−ǫ)-approximation for submodular maximization

with a cardinality constraint in sliding window model.

Proof. Let x1 and x2 (if it exists) be the first two indices
of the smooth histogram right after the update operations
are done for a newly arrived element vt. Note that the start
of the active window At is in the range [x1, x2]. Lemma 2
implies that either x2 = x1 +1 or h(x2, t

′) ≥ (1−β)h(x1, t
′)

at some t′ ≤ t. If x2 = x1 + 1, the start of At is equal to
either x1 or x2. In this case, we have calculated h(At) the
result of StreamAllThresholds on window At and Algorithm 2
will return h(At) as the result. Using Lemma 1, we have

h(At) ≥ (1− δ) fk(At)
2

which proves the claim. We note that
if x2 does not exist, the start of the active window is x1 and
the claim is proved in a similar manner.

In the other case, we have h(x2, t
′) ≥ (1 − β)h(x1, t

′) for
some t′ ≤ t. Now if h was (α, β)-smooth we would be done;
in the remaining part of the proof we show how to use sub-
modularity instead of smoothness to prove the claim.

Let OPT be the optimal solution on the interval (x1, t),
formally:

OPT = argmax
S⊆{vx1

,vx1+1...,vt}∧|S|≤k

f(S).

By definition of fk, f(OPT) ≥ fk(At).
We begin by splitting OPT into two sets, those elements

appearing before and after t′. LetOPT1 =OPT∩{vx1
, vx1+1

. . . , vt′} and OPT2 = OPT ∩ {vt′+1, . . . , vt}. Let k1 =
|OPT1| and k2 = |OPT2|. Similarly, let f1 = f(OPT1)
and f2 = f(OPT2). By submodularity,

f(OPT) ≤ f(OPT1) + f(OPT2). (1)

Moreover, Lemma 1 implies that

h(x1, t
′) ≥ (1− δ)

kf1
k + k1

and h(x2, t) ≥ (1− δ)
kf2

k + k2
. (2)

By monotonicity of Algorithm 1, we have: h(x2, t) ≥ h(x2, t
′) ≥

(1− β)h(x1, t
′). We can now bound h(x2, t)

≥ (1− β)(1− δ)max

(

k

k + k1
f1,

k

k + k2
f2

)

≥ k(1− ǫ)max

(

f(OPT)− f2
k + k1

,
f2

k + k2

)

,

where the first inequality follows by Equation 2, the fact
that h(x2, t) ≥ (1 − β)h(x1, t

′), and the setting of β and δ,
and the second from Equation 1.

For ease of notation, let µ = f2/f(OPT). Clearly µ ∈
[0, 1]. It is possible to verify that

max

(

1− µ

2k − k2
,

µ

k + k2

)

≥ 1

3k
, (3)

as the minimum of the leftmost side is achieved at k2 =
3kµ− k. Continuing to bound h(x2, t):

≥ k(1− ǫ)f(OPT)max

(

1− µ

2k − k2
,

µ

k + k2

)

≥ k(1− ǫ)f(OPT)
1

3k
≥ 1

3
(1− ǫ)f(OPT) ≥ 1

3
(1− ǫ)f(At),

where the first inequality follows from definition of µ, and
the second from Equation 3; which concludes the proof.

We now state a bound on the memory and the update
time of Algorithm 2.

Theorem 2. Algorithm 2 with β = δ = ǫ/2 has an up-

date time of O(L log2(kΦ)/ǫ2) per element and uses memory

O(k log2(kΦ)/ǫ2) where L is an upper bound on the time for

each evaluation of function f .

The proof of the theorem is straightforward, we omit it due
to lack of space.

5. A (1/2−ǫ)-APPROXIMATION ALGORITHM
In this section we present a 1/2 − ǫ approximation algo-

rithm that uses more memory and amortized update time
to get a better approximation.

The algorithm is based on two main ideas. The first one is
to split the entire stream into sub-windows of size W ′ ≤W
and to run a variant of the StreamAllThresholds starting from
the first element of each sub-window. Each sub-window i
consists of elements that arrive at times (i− 1)W ′ + 1, (i−
1)W ′ + 2, . . . , iW ′. This guarantees that when the first el-
ement of the sliding window is aligned with the start of a
sub-window we can obtain a 1/2− ǫ approximation just by
using the streaming algorithm started at the sub-window.

Unfortunately the situation is more complex when the first
element of the sliding window lies inside a sub-window. In
fact, there is no stream that would work natively. The sec-
ond idea behind our algorithm is to run a variant of Stream-

AllThresholds algorithm first backward from the end of each
sub-window to the beginning of each sub-window and then
forward from the beginning of each sub-window and on-
wards. In particular, for every sub-window i, every threshold

τ and every (i−1)W ′+1 ≤ t′ ≤ iW ′, we build the sets Si,t′

τ

such that elements are added in Si,t′

τ by analyzing sequen-
tially elements in iW ′, iW ′ − 1, . . . , t′, iW ′ + 1, iW ′ + 2, . . .
and by adding an element if and only if the marginal con-
tribution of the element to the value of the set is at least
τ and if the set is smaller than k. Now there are two key
observations to make. First, if the first element of the slid-

ing windows arrives at time t′ we can use the sets Si,t′

τ for
different values of τ to solve the problem. Second, when we

consider the family of sets Si
τ = ∪t′S

i,t′

τ , the family contains
at most k+1 distinct sets (because going backwards we add
at most k elements) so we can store only those sets and use
them to solve the problem. In the remainder of this section
we formalize this reasoning to get a 1/2 − ǫ approximation
algorithm.

We start by introducing some additional notation. For
every sub-window i, we define a set of thresholds Ti =
{

f(viW ′)

2k
,

(1+δ)f(viW ′)

2k
,

(1+δ)2f(viW ′)

2k
, . . . ,

(1+δ)mif(viW ′)

2k

}

where mi is ⌊log1+δ 2k∆/f(viW ′)⌋. For every τ ∈ Ti, we
first compute a single backward pass from the last element
in sub-window viW ′ and end by the first element of the sub-
window v(i−1)W ′+1. In this pass, we add any item with

marginal value at least τ to set Bi
τ as long as |Bi

τ | remains
at most k.

By definition Bi
τ contains at most k elements; let j1 >

j2 > · · · > jk be the indices of the elements vj1 , vj2 , . . . , vjk ∈
Bi

τ . We define Si,t′

τ = ∪jℓ≥t′vjℓ as the set of elements

in Bi
τ inserted at or after time t′. In our algorithm we

do not keep all Si,t′

τ , but we restrict our attention only to

the set Si,t′

τ for t′ ∈ {j0, j1, j2, . . . , jk} where j0 = iW ′.

We also define Si
τ = ∪t′∈{j0,j1,j2,...,jk}S

i,t′

τ . We note that

|Bi
τ | < k, so there will be at most k + 1 sets in Si

τ . Finally,
to handle the initial elements in the stream, we define T0 =
{

f(v1)
2k

, (1+δ)f(v1)
2k

, (1+δ)2f(v1)
2k

, . . . , (1+δ)m0f(v1)
2k

}

where m0

is ⌊log1+δ 2k∆/f(v1)⌋. We also initialize set S0,0
τ = ∅ for

any τ ∈ T0.
Our algorithm has two steps. At first, if needed, it runs

the backward algorithm to compute Si,t′

τ . Then, it adds

the last element in the stream, vt, to all Si,t′

τ ∈ Si
τ , for

1 Input: Stream of elements v1, v2, · · · , sub-window size

W ′ ≤W and δ;

2 S0,0
τ ← ∅ for each τ ∈ T0;

3 for t = 1, 2, · · · do
4 // Initialize Si,t′

τ ;
5 if t = iW ′ for some integer i then
6 for τ ∈ Ti do

7 Bi
τ ← ∅;

8 Si,t
τ ← ∅;

9 for t′ = t, t− 1, · · · , t−W ′ + 1 do

10 if f ′
Bi

τ
(vt′) ≥ τ ∧ |Bi

τ | < k then

11 Add vt′ to Bi
τ ;

12 Si,t′

τ ← Bi
τ ;

13 // Update all active Si,t′

τ ;
14 it ← max{0, ⌈(t−W + 1)/W ′⌉};
15 for it ≤ i ≤ ⌈t/W ′⌉ − 1 do

16 for τ ∈ Ti do

17 for Si,t′

τ ∈ Si
τ do

18 if f ′

S
i,t′

τ

(vt) ≥ τ ∧ |Si,t′

τ | < k then

19 Add vt to Si,t′

τ

20 Let Sit,t
∗

τ be the set in Sit
τ with minimum t∗ such

that Sit,t
∗

τ ⊆ At;

21 Return maxτ∈Tit
f(Sit,t

∗

τ);
Algorithm 3: BidirectionalAlg

every it ≤ i ≤ ⌈t/W ′⌉ − 1 (all active sub-windows) and
τ ∈ Ti, if its marginal impact is large enough. Here we
let it = max{0, ⌈(t −W + 1)/W ′⌉} be the first active sub-
window. Finally, we set the solution of active window At to
be maxτ∈Tit

Sit,t
∗

τ where Sit,t
∗

τ is the set in Sit
τ with mini-

mum t∗ such that Sit,t
∗

τ ⊆ At. We call the algorithm Bidi-

rectionalAlg, and show the pseudo-code in Algorithm 3.

Theorem 3. For any ǫ > 0, Algorithm 3 with δ = ǫ is

a (1/2− ǫ)-approximation for submodular maximization with

cardinality constraint in sliding window model.

Proof. The main idea is similar to the proof of Lemma 1.
There exists some (1− δ)fk(At)/2k ≤ τ ≤ fk(At)/2k in set

Tit . We lower bound value of Sit,t
∗

τ . If |Sit,t
∗

τ | = k, we have

f(Sit,t
∗

τ) ≥ kτ ≥ (1− δ)fk(At)/2 which proves the claim.
In the other case, we show f ′

S
it,t

∗

τ

(x) < τ for any x ∈ At.

The choice of t∗ implies that f ′

S
it,t

∗

τ

(x) < τ for any x ∈
At that arrives in sub-window it otherwise we could find a
smaller t∗ which is a contradiction. Furthermore any x that
comes after sub-window i with incremental value ≥ τ is also
added to Sit,t

∗

τ . Therefore the incremental value of any x ∈
At is less than τ . Let OPT be the argmaxS⊂At:|S|≤k f(S).

Submodularity guarantees that f(OPT)− f(Sit,t
∗

τ) ≤
∑

x∈OPT f ′

S
it,t

∗

τ

(x) < |OPT |τ ≤ kτ ≤ f(OPT)/2 which

completes the proof.

We now state a bound on the memory and the update
time of Algorithm 3.

Theorem 4. Algorithm 3 with δ = ǫ has an average

update time of O(Lk log(kΦ)W/(W ′ǫ)) per element and uses

memory O(W ′+(k2 log(kΦ)W/(W ′ǫ))) where L is an upper

bound on each evaluation of function f .

The proof of the theorem is straightforward, we omit it due
to lack of space.

Note that the two last theorems imply, for example, that
it is possible to obtain a 1/2 − ǫ approximation using only

O(Lk log(kΦ)
√
W/(ǫ)) update time andO(k2 log(kΦ)

√
W/ǫ)

memory.

6. EXPERIMENTS
We present the experimental evaluation of our methods

on several publicly available real-world datasets. We first
show how to avoid some of the assumptions we made during
the analysis, for example knowing the maximum marginal
gain, ∆. Then we describe the datasets and baselines, and
finally present the empirical results. Overall, we show that
our algorithms are significantly faster that the offline greedy
algorithm that recomputes the results at every time step,
while achieving comparable accuracy.

6.1 Implementation details

Distributed implementation.
The algorithms were implemented in C++ and run on com-

modity hardware. Each run employed a single core. Notice
that while we have not pursued this direction, our algorithms
can be easily implemented in a distributed and parallel set-
ting where items are processed in different machines to scale
to even larger datasets with higher data arrival rates. For
instance, in the StreamAllThresholds algorithm, each thresh-
old can be handled independently by a distinct worker ma-
chine using O(log(kΦ)/δ) machines in total. This way each
machine can perform (in parallel) O(1) evaluations per up-
date and store only O(k) elements. A master machine can
dispatch new elements to each worker machine, and then
query each of them to select the best solution among the
ones found. In Algorithm 2, each individual sub-instance
of StreamAllThresholds can be handled by an independent
group of machines as described before. For our experiments,
however, we did not need a distributed implementation; we
report our results for a single-core implementation of the
algorithms.

Assumption of the knowledge of ∆.
One latent assumption we made in the analysis of the

algorithm is the knowledge of ∆. Although the value of ∆ is
sometimes known, we show how to implement the algorithms
without this apriori knowledge using lazy initialization. A
similar approach has been used in [4].

We discuss the details for StreamAllThresholds, but note
that the same method works for all the other algorithms.
The parameter ∆ is only used to define the number of thresh-
olds T we use. Specifically, we set m = ⌊log1+δ 2k∆/f(u1)⌋,
and define thresholds from f(u1)

2k
to (1+δ)mf(u1)

2k
.

We can achieve the same provable guarantees while actu-
ally initializing the thresholds lazily. Let ∆t = maxi≤t f({vi})
be the maximum of the value of f on any single element
seen up to time t. Let mt = ⌊log1+δ 2k∆t/f(u1)⌋, the algo-

rithm will maintain all thresholds in Tt = { f(u1)
2k

, (1+δ)f(u1)
2k

,
(1+δ)2f(u1)

2k
, . . . , (1+δ)mtf(u1)

2k
}, and the associate solution Sτ

for τ ∈ Tt. Note that mt can only increase. In these cases,
i.e. when mt > mt−1, we first add the new thresholds and
initialize their corresponding sets (Sτ for each new thresh-

old τ) to ∅. Submodularity of f guarantees that no prior
elements would have met the new thresholds.

The same technique can be used for SmoothHistogramAlg,
where again each individual copy of the algorithm StreamAll-

Thresholds lazily initializes the thresholds depending on the
running maximum. Similarly, in BidirectionalAlg we main-
tain the Ti and the associated sets Si,t

τ by initializing them
only when necessary. Finally, observe that for specific cases
of f , the algorithms can be further sped up by discarding
small thresholds. For example, in unweighted coverage, the
minimum non-zero f ′(·) is at least 1, therefore all smaller
thresholds can be ignored.

6.2 Datasets
In this section we describe the datasets used for the eval-

uation.
DBLP. We define a max cover instance from the DBLP

publication records [15]. We extract 1.8 million publications
and 1.2 million authors for the period from 1959 to 2016.
Our goal is to maintain a set of k authors that together rep-
resent the largest possible number of different conferences in
computer science. We say that a conference is represented by
an author if she has published at least 3 papers in the venue,
this gives about 160 thousand items in the stream (one per
author with at least 3 papers in the same conference). We
order the authors by the time of their first publication (with
ties broken randomly).

Gowalla. In this experiment we want to simulate a sys-
tem that maintains a set of currently hot locations that
cover as many users as possible in their immediate prox-
imity. We use the check in data collected by the Gowalla
social network [12], which contains about 6.5 millions times-
tamped and geo-localized check-ins of about 200 thousand
users over the period of 2/2009 - 10/2010. We first partition
the dataset into two parts temporally. We use the first 20%
to define the submodular function f , as we describe below,
and the last 80% to evaluate our algorithms.

During the first part, we divide the globe latitude and
longitude coordinates into a uniform degree-spaced grid of
size 80,000× 80,000 cells (these correspond to 1km size cells
at the Equator). For each cell (i, j) in the grid we record the
set of users that had at least one check-in in that cell. For
a given location (i, j), the associated set is the set of users
that checked in to a place in location (i, j) or an immediately
adjacent cell during the first phase. The goal is to maintain
k check-in locations from the active window that cover as
many distinct users as possible.3

Yahoo! Front Page Visits. Here we experiment with
a standard dataset used in submodular optimization litera-
ture [4]. This dataset is extracted from the click logs of news
articles displayed in the Yahoo! Front Page [29]. It contains
46 millions timestamped 5-dimensional feature vectors (we
discard the constant feature and normalize the vector norm),
representing user-visits over the period of ten days in May
2009. We stream the vectors in time order and optimize the
active set selection function defined in Section 1.1.

6.3 Results

3We recognize that our modeling of this problem is sim-
plistic, but wanted to keep it to a minimum, as the main
purpose of this dataset is to evaluate the performance of the
algorithms, and not to study location-based systems.

 0

 50

 100

 150

 200

 250

 300

 350

 0 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

V
a
lu

e

Time

Solution Value vs Time

Offline Greedy
BidirectionalAlg
SmoothHistAlg

Random

(a) DBLP

 2000

 4000

 6000

 8000

 10000

 0 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

V
a
lu

e

Time

Solution Value vs Time

Offline Greedy
BidirectionalAlg
SmoothHistAlg

Random

(b) Gowalla

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

V
a
lu

e

Time

Solution Value vs Time

Offline Greedy
BidirectionalAlg
SmoothHistAlg

Random

(c) Yahoo!

Figure 1: Value of the solution obtained by our algorithms for k = 10, W = 10,000 and ǫ = 0.1 as well as by

the off-line greedy algorithm and a random baseline on a sample of time-steps. Notice how our algorithms

achieve solutions with value close to that of off-line greedy.

To evaluate the performance of our algorithms, we con-
sider two benchmarks. The first, serving as a sanity check,
is a random sample of k points from the sliding window.
The second is the batch greedy algorithm on the elements
in the active set. The latter serves as an upper bound, as
it is the best algorithm for the problem. However, since it
is not optimized for streaming computations, it is expensive
to evaluate. As such, we run it regularly, but not at every
time step. We emphasize that ours are the first algorithms
that handle streams with both additions and deletions.

Value of the output over time. In our first experiment
we show the value of the objective function at every time
step as computed by the algorithm and the two benchmarks.
For the random baseline, we average the results over 1000
trials, all of the other algorithms are deterministic. We set
W = 10,000, k = 10, and ǫ = 0.1. The results are shown in
Figure 1. Notice that in all the experiments involving Bidi-

rectionalAlg we set W ′ = W to model the scenario of a user
that wants the best running time for a 1/2−ǫ approximation.

In all instances the BidirectionalAlg algorithm results are
very close to the off-line greedy algorithm. As expected, the
solution of SmoothHistogramAlg is slightly worse (we observe
a gap of about 10%). So both algorithms perform much bet-
ter than the pessimistic worst-case analysis, a result that is
quantitatively confirmed in the next section. Not surpris-
ingly, all algorithms greatly exceed the random baseline.

Finally note that for the DBLP dataset, the solution value
generally decreases, as authors who first publish later tend
to have shorter careers, and thus have not had a chance
to cover as many venues. On the other hand, due to the
nature of the objective, the value of the solution in Gowalla
and Yahoo! datasets remains relatively stable, and oscillates
in a smaller region.

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

R
a

ti
o

k

BidirectionalAlg vs Offline greedy - Solution value

epsilon = 0.1
epsilon = 0.15
epsilon = 0.2

epsilon = 0.25

(a) BidirectionalAlg

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

R
a

ti
o

k

SmoothHistAlg vs Offline greedy - Solution value

epsilon = 0.1
epsilon = 0.15

epsilon = 0.2
epsilon = 0.25

(b) SmoothHistogramAlg

Figure 2: Average ratio of solution value of our algo-

rithms over offline greedy in DBLP—higher is better

Comparison with greedy. To better understand the
relative performance of the algorithms, we focus on the DBLP
dataset, and consider what fraction of the benchmark greedy
solution is achieved by all algorithms for different values of
k; we plot the results in Figure 2. Our algorithms always
report solutions that are between 80% and 95% of the value
of offline greedy for any setting of ǫ ∈ [0.1, 0.25] and any
k ∈ [10, 100], far exceeding the theoretical worst case anal-
ysis. Notice that has been observed that greedy often finds
solutions that are close to optimum exceeding the 1− 1

e
ap-

proximation in many submodular instances [13].
All of the results match the intuition provided by the the-

ory: for the same ǫ parameter the BidirectionalAlg returns
higher values than SmoothHistogramAlg, and lower ǫ param-
eters yield better solutions. Also while the problem becomes
more challenging with increasing k values (due to more over-
lap in the sets that needs to be handled) the streaming al-
gorithms achieve good results (similar results are observed
in all datasets and using worst-case ratios instead of average
ratios).

Finally, we evaluate the speed of our algorithms, again as
compared to the offline greedy approach. Following previous
work [4], we record the average number of evaluations of the
submodular function executed for each item processed. This
captures the most expensive operation, and ignores imple-
mentation variations. We show the results in Figure 3.

Notice that our algorithms are much faster than re-running
greedy from scratch. Even in small datasets with small win-
dow size, our algorithms require between a factor of 2,000
and 6,000 fewer calls per item processed. Even larger speed-
ups can be observed for larger datasets and window sizes. As
expected, the speedups increase with ǫ. We observe that as
k increases, the speedups achieved by the SmoothHistogram-

Alg algorithm grow as well, while those of BidirectionalAlg

are slightly decreasing with k. This is expected as SmoothHi-

stogramAlg update time depends only poly-logarithmically
on k while BidirectionalAlg has a linear dependence. These
considerations are confirmed by the results in Figure 4 where
we report the average number of evaluation of the submod-
ular function in the setting of the previous experiment. No-
tice how only a few hundred evaluations are sufficient, and
that the evaluations executed by SmoothHistogramAlg are
less sensitive to k as expected.
Scalability. Having established that our algorithms pre-

serve solutions with quality close to the offline greedy algo-
rithm, while taking significantly less time, we evaluate the
scalability of SmoothHistogramAlg in terms of memory use

 2000

 3000

 4000

 5000

 6000

 7000

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

R
a

ti
o

k

BidirectionalAlg vs Offline greedy - Calls to fn.

epsilon = 0.1
epsilon = 0.15

epsilon = 0.2
epsilon = 0.25

(a) BidirectionalAlg

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

R
a

ti
o

k

SmoothHistAlg vs Offline greedy - Evaluations

epsilon = 0.1
epsilon = 0.15
epsilon = 0.2

epsilon = 0.25

(b) SmoothHistogramAlg

Figure 3: Average ratio of the number of submodu-

lar function evaluations executed by greedy over the

ones executed by our algorithms—higher is better.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

F
n

.
E

v
a

lu
a

ti
o

n
s

k

BidirectionAlg - Fn. Evaluations per update

epsilon = 0.1
epsilon = 0.15

epsilon = 0.2
epsilon = 0.25

(a) BidirectionalAlg

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

E
v
a

lu
a

ti
o

n
s

k

SmoothHistAlg - Evaluations

epsilon = 0.1
epsilon = 0.15
epsilon = 0.2

epsilon = 0.25

(b) SmoothHistogramAlg

Figure 4: Number of evaluations of the submodular

function executed per update—lower is better.

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

G
ow

alla

Yahoo

E
v
a
l.
 p

e
r

u
p
d
a
te

Fn. evaluations per update vs k

k=10
k=20
k=30
k=40

(a) Function Evaluations
per Update

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

G
ow

alla

Yahoo

F
ra

c
ti
o
n
 I
te

m
s
 S

to
re

d

Max. Fraction Items Stored vs k

k=10
k=20
k=30
k=40

(b) Max. Fraction of the
Window Stored

Figure 5: Number of evaluations of the submodular

function per update and fraction of items in the win-

dow stored by SmoothHistogramAlg—lower is better.

and speed on larger datasets with more challenging window
sizes. We set W = 1,000,000 and run SmoothHistogramAlg

on Gowalla and Yahoo using ǫ = 0.25. First, in Figure 5(a)
we show the average number of function evaluation per item
processed as a function of k. The conclusions from previous
experiment continue to hold, with our algorithm requiring
no more than 200 function calls to process every item. Then,
we evaluate the memory requirement of our sublinear algo-
rithm SmoothHistogramAlg. To do so in a platform indepen-
dent way we compute the total number of items stored by
our algorithm in all sets Sτ (counting repetitions) at time
t, and look at the maximum over the entire stream. We
report the results in Figure 5(b). Observe that our algo-
rithm maintains only a small fraction of the current sliding
window (between 0.05% and 0.4%) thus allowing to process
large sliding windows with minimal memory.

7. CONCLUSIONS
We showed the first non-trivial algorithms for arbitrary

monotone submodular functions subject to cardinality con-
straints in sliding window settings. We proved that one can
achieve approximation ratios of 1/2 − ǫ, while using sublin-

ear space and time per update. An interesting direction for
future work is to address this problem in the fully dynamic
setting, where addition and deletion of items is allowed in
arbitrary order. Another interesting question is whether it is
possible to improve the approximation guarantees of 1/2− ǫ
in the streaming context.

8. REFERENCES

[1] List of open problems in sublinear algorithms:
Problem 20. http://sublinear.info/20.

[2] Zeinab Abbassi, Vahab S Mirrokni, and Mayur
Thakur. Diversity maximization under matroid
constraints. In ACM SIGKDD, pages 32–40. ACM,
2013.

[3] Charu C Aggarwal. Data streams: models and

algorithms, volume 31. Springer Science & Business
Media, 2007.

[4] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman,
Amin Karbasi, and Andreas Krause. Streaming
submodular maximization: Massive data
summarization on the fly. In ACM SIGKDD, pages
671–680. ACM, 2014.

[5] Ashwinkumar Badanidiyuru and Jan Vondrák. Fast
algorithms for maximizing submodular functions. In
SODA, pages 1497–1514. Society for Industrial and
Applied Mathematics, 2014.

[6] Eytan Bakshy, Itamar Rosenn, Cameron Marlow, and
Lada Adamic. The role of social networks in
information diffusion. In International conference on

World Wide Web, pages 519–528. ACM, 2012.

[7] MohammadHossein Bateni, MohammadTaghi
Hajiaghayi, and Morteza Zadimoghaddam.
Submodular secretary problem and extensions. In
Approx, pages 39–52. Springer, 2010.

[8] Vladimir Braverman, Harry Lang, Keith Levin, and
Morteza Monemizadeh. Clustering problems on sliding
windows. In SODA, pages 1374–1390, 2016.

[9] Vladimir Braverman and Rafail Ostrovsky. Smooth
histograms for sliding windows. In FOCS, pages
283–293, 2007.

[10] Ho-Leung Chan, Tak Wah Lam, Lap-Kei Lee, and
Hing-Fung Ting. Continuous monitoring of distributed
data streams over a time-based sliding window.
Algorithmica, 62(3-4):1088–1111, 2012.

[11] Jiecao Chen, Huy L. Nguyen, and Qin Zhang.
Submodular maximization over sliding windows.
CoRR, abs/1611.00129, 2016.

[12] Eunjoon Cho, Seth A Myers, and Jure Leskovec.
Friendship and mobility: user movement in
location-based social networks. In ACM SIGKDD,
pages 1082–1090. ACM, 2011.

[13] Graham Cormode, Howard J. Karloff, and Anthony
Wirth. Set cover algorithms for very large datasets. In
Proceedings of the 19th ACM Conference on

Information and Knowledge Management, CIKM

2010, Toronto, Ontario, Canada, October 26-30, 2010,
pages 479–488, 2010.

[14] Mayur Datar, Aristides Gionis, Piotr Indyk, and
Rajeev Motwani. Maintaining stream statistics over
sliding windows. SIAM journal on computing,
31(6):1794–1813, 2002.

[15] DBLP. DBLP xml dump – Sept 2016.
http://dblp.uni-trier.de/xml/.

[16] Uriel Feige. A threshold of ln n for approximating set
cover. J. ACM, 45(4):634–652, July 1998.

[17] Brendan J. Frey and Delbert Dueck. Mixture
modeling by affinity propagation. In NIPS, pages
379–386, Cambridge, MA, USA, 2005. MIT Press.

[18] Phillip B Gibbons and Srikanta Tirthapura.
Distributed streams algorithms for sliding windows. In
SPAA, pages 63–72. ACM, 2002.

[19] David Kempe, Jon Kleinberg, and Éva Tardos.
Maximizing the spread of influence through a social
network. In ACM SIGKDD, pages 137–146, New
York, NY, USA, 2003. ACM.

[20] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii,
and Andrea Vattani. Fast greedy algorithms in
mapreduce and streaming. ACM Transactions on

Parallel Computing, 2(3):14, 2015.

[21] Jure Leskovec, Andreas Krause, Carlos Guestrin,
Christos Faloutsos, Jeanne VanBriesen, and Natalie
Glance. Cost-effective outbreak detection in networks.
In ACM SIGKDD, pages 420–429. ACM, 2007.

[22] Hui Lin and Jeff Bilmes. A class of submodular
functions for document summarization. In ACL:

Human Language Technologies, pages 510–520.
Association for Computational Linguistics, 2011.

[23] Andrew McGregor. Graph stream algorithms: a
survey. ACM SIGMOD, 43(1):9–20, 2014.

[24] Michel Minoux. Accelerated greedy algorithms for
maximizing submodular set functions. In J. Stoer,
editor, Optimization Techniques, volume 7 of Lecture
Notes in Control and Information Sciences,
chapter 27, pages 234–243. Springer Berlin Heidelberg,
Berlin/Heidelberg, 1978.

[25] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar,
and Andreas Krause. Distributed submodular
maximization: Identifying representative elements in
massive data. In NIPS, pages 2049–2057. Curran
Associates, Inc., 2013.

[26] George L Nemhauser, Laurence A Wolsey, and
Marshall L Fisher. An analysis of approximations for
maximizing submodular set functionsâĂŤi.
Mathematical Programming, 14(1):265–294, 1978.

[27] Barna Saha and Lise Getoor. On maximum coverage
in the streaming model & application to multi-topic
blog-watch. In SDM, volume 9, pages 697–708. SIAM,
2009.

[28] Hing-Fung Ting, Lap-Kei Lee, Ho-Leung Chan, and
Tak Wah Lam. Approximating frequent items in
asynchronous data stream over a sliding window.
Algorithms, 4(3):200–222, 2011.

[29] Yahoo! Front Page Today Module User Click Log
Dataset. http://webscope.sandbox.yahoo.com.

