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Reality

Private-Public networks
~ 5 2 % o f N Y C 
Facebook users hide 
their friends

Only my friends 
can see my 

friends

We are
a private 

group
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There is no such thing as the Social Network!



Social network of 

Each user has his/her own personal Social Network!
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Social network of 

User B

Each user has his/her own personal Social Network!

User B

User A



Computational implication

The algorithms need to respect the privacy of the 
users. 

We can only use the data that the user can access. 

Naively, we need to run the algorithms once for each 
user on a different (and huge) graph!



Application: Friend suggestion
Network signals are very useful 
     Number of common neighbors 
     Personalized PageRank, etc. 
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Application: Friend suggestion
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Common Neighbors - Ideal World 
     1) Run the algorithm (in parallel) on the graph G 
     2) For each user suggest top k users by common        
         neighbors. 

… but there is no such graph G. 



Application: Friend suggestion
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     Multiple graphs = Multiple answers! 
     How many common neighbors do B and C have?  
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Application: Friend suggestion
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Answer for  

Zero common 
neighbors! 

B

We cannot suggest C to B as friends based on common 
neighbors! 

Common Neighbors - Real World 
     Multiple graphs = Multiple answers! 
     How many common neighbors do B and C have?  



1) Running the algorithms N times is infeasible 
2) Ignoring all private data is very ineffective! 

Naive approaches
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Naive approaches

A

My friends
are
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E

From public 
data 

prospective 
there are 

no signals!

No suggestions for the user!

1) Running the algorithms N times is infeasible 
2) Ignoring all private data is very ineffective! 



Public-Private 
Graph Model



There is a public graph    

Private-Public model

G



There is a public graph     in addition every node     has 
access to a private graph 

Private-Public model
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We assume the private graph to be at <= 2 hops from   . u
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For each     we would like to execute computation on 

Private-Public model

u

u
G [Gu

This respects the privacy of each user. 

We want the computation to be efficient.



Two-Steps Approach

Precompute data structure for      so that we can 
solve problems in              efficiently.

G
G [Gu

Preprocessing

Synopsis ofPublic Graph
+

u

Query for user

Private Graph Gu

Output for User

fast computation

G G

u

u



Private-Public problem

Ideally. 

Preprocessing time: 

Preprocessing space: 

Query time: 

Õ (|VG|)

Õ (|EG|)

Õ (|EGu |)



Warm-up: # connected components



Warm-up: # connected components

Precompute component IDs in G
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Warm-up: # connected components

Add private edges and merge conn. components
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Warm-up: # connected components

Add private edges and merge conn. components.
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Reachability

How many nodes can I reach from u?

u

 We have to handle overlaps.



Reachability

Key idea: use size-estimation sketch       [Cohen JCSS97] 

Every node samples a random number between [0,1] 
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Reachability

Key idea: use size-estimation sketch       [Cohen JCSS97] 

Every node samples a random number between [0,1]. 

Look at the k-th smallest value, use it to estimate the size of the set. 

Composable sketch of size k.
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0.7

0.5

0.9

0.33

0.15
[0.15, 0.2]
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Reachability

 How many nodes can I reach from u?

u

Precompute sketches for each node in public graph.
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Reachability

u

Compose sketches of nodes reachable in private graph.

[0.1, 1.0]

[0.7, 1.0]

[0.2, 0.3]

[0.8, 1.0]

[0.1, 0.2]

 How many nodes can I reach from u?



Experiments Personalized PageRank

Approximating the PPR stationary distribution. 

Up to 4 orders of magnitudes faster naive approach.



Conclusions

   New model for practical problems; 

   Some algorithms designed using sampling and 
     sketching techniques; 

   Large speed-up in practice.



Future works

   New algorithms for other problems; 

   Not only graph problems; 

   Study limit of the model (lower bounds). 



Thanks!
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Nice property    [Jeh and Widom WWW03]
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Nice property    [Jeh and Widom WWW03] 

Simple heuristic:

Personalized PageRank
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Using public graph 
distribution 
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Social affinity

Which connection is stronger? 
It is important to consider the number of paths and their  
lengths



Social affinity

              is the maximum fraction of edges that it is 
possible to delete and still have     and      connected with 
probability at least

v

w

A✓(v, w)
v w

✓



Social affinity

 How can we compute it?

v

w



Social affinity
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 For each                                        for          delete the  
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Social affinity

 How can we compute it?  [Panigrahy et al. WSDM12] 
 For each                                        for          delete the  
 edge in the graph with probability    . Store for each node 
 the component ids

v

w

p 2 [0, 1 + ✏, (1 + ✏)2, . . . ] log n
p

[C, A,…

[B, A,…

With     
samples 
we can 

estimate the 
connection 
probability

log n



Social affinity

 Using sketches of size            per node we can estimate 
 affinity. 
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Social affinity

 Using sketches of size            per node we can estimate 
 social affinity. 
 When we add       we have to update the sketches, it is 
 enough to update the connected components!
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