Private-Public networks

Idealized vision
Private-Public networks

Reality

My friends are private
Private-Public networks

Reality

My friends are private
Private-Public networks

Reality

My friends are private

Only my friends can see my friends
Private-Public networks

Reality

My friends are private

Only my friends can see my friends
Private-Public networks

Reality

We are a private group

My friends are private

Only my friends can see my friends
Reality

We are a private group

My friends are private

Only my friends can see my friends

~52% of NYC Facebook users hide their friends
Private-Public networks

We are a private group

Reality

My friends are private

~ 52% of NYC Facebook users hide their friends

Only my friends can see my friends

There is no such thing as the Social Network!
Each user has his/her own personal Social Network!
Each user has **his/her own personal** Social Network!
Computational implication

The **algorithms need to respect** the privacy of the users.

We can only use the data that the user can access.

Naively, we need to **run** the algorithms **once for each** user on a **different** (**and huge**) graph!
Application: Friend suggestion

Network signals are very useful
 Number of common neighbors
 Personalized PageRank, etc.

My friends are private
Application: Friend suggestion

Common Neighbors - Ideal World
1) Run the algorithm \textit{(in parallel)} on the graph G
2) For each user suggest top k users by common neighbors.

… but there is no such graph G.

My friends are private
Application: Friend suggestion

Common Neighbors - Real World
Multiple graphs = Multiple answers!
How many common neighbors do B and C have?

My friends are private

Answer for One common neighbor: me!
Application: Friend suggestion

Common Neighbors - Real World
Multiple graphs = Multiple answers!
How many common neighbors do B and C have?

We cannot suggest C to B as friends based on common neighbors!
Naive approaches

1) Running the algorithms N times is infeasible
2) Ignoring all private data is very ineffective!

From user A’s prospective there are interesting signals

E and D are good suggestions!
Naive approaches

1) Running the algorithms N times is **infeasible**
2) Ignoring all private data is very **ineffective**!

My friends are private

From public data prospective there are no signals!

No suggestions for the user!
Public-Private Graph Model
Private-Public model

There is a public graph G
Private-Public model

There is a public graph G in addition every node u has access to a private graph G_u

We assume the private graph to be at ≤ 2 hops from u.
For each u we would like to execute computation on $G \cup G_u$
Private-Public model

For each u we would like to execute computation on $G \cup G_u$

This respects the privacy of each user.

We want the computation to be efficient.
Two-Steps Approach

Precompute data structure for G so that we can solve problems in $G \cup G_u$ efficiently.
Private-Public problem

Ideally.

Preprocessing time: $\tilde{O}(|E_G|)$

Preprocessing space: $\tilde{O}(|V_G|)$

Query time: $\tilde{O}(|E_{G_u}|)$
Warm-up: # connected components
Warm-up: # connected components

Precompute component IDs in G
Warm-up: # connected components

Add private edges and merge conn. components
Warm-up: # connected components

Add private edges and merge conn. components.
Results

Algorithms
 Reachability
 Approximate All-pairs shortest paths
 Correlation clustering
 Social affinity

Heuristics
 Personalized PageRank
 Centrality measures
Results

Algorithms

Reachability
Approximate All-pairs shortest paths
Correlation clustering
Social affinity

Heuristics

Personalized PageRank
Centrality measures
Reachability

How many nodes can I reach from u?
Reachability

How many nodes can I reach from u?

We have to handle overlaps.
Reachability

Key idea: use size-estimation sketch

Every node samples a random number between [0,1]

[Cohen JCSS97]
Reachability

Key idea: use size-estimation sketch [Cohen JCSS97]

Every node samples a random number between [0,1].

Look at the **k-th smallest value**, use it to estimate the size of the set.
Reachability

Key idea: use size-estimation sketch

Every node samples a random number between [0,1]. Look at the k-th smallest value, use it to estimate the size of the set.

Composable sketch of size k.

[Cohen JCSS97]
Reachability

Key idea: use size-estimation sketch

Every node samples a random number between [0,1].

Look at the \textbf{k-th smallest value}, use it to estimate the size of the set.

Composable sketch of size \textbf{k}.

[0.1, 0.2] \rightarrow [0.1, 0.15] \rightarrow [0.15, 0.2]
Reachability

How many nodes can I reach from u?

Precompute sketches for each node in public graph.
Reachability

How many nodes can I reach from u?

Compose sketches of nodes reachable in private graph.
Experiments Personalized PageRank

Approximating the PPR stationary distribution.

<table>
<thead>
<tr>
<th>Graph</th>
<th>A/B</th>
<th>Cosine</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBLP</td>
<td>6.5e-3</td>
<td>99.8%</td>
</tr>
<tr>
<td>LIVEJOURNAL</td>
<td>3.5e-4</td>
<td>99.1%</td>
</tr>
<tr>
<td>ORKUT</td>
<td>1.6e-3</td>
<td>99.9%</td>
</tr>
<tr>
<td>YOUTUBE</td>
<td>1.7e-2</td>
<td>99.8%</td>
</tr>
</tbody>
</table>

Up to 4 orders of magnitudes faster naive approach.
Conclusions

- New model for practical problems;
- Some algorithms designed using sampling and sketching techniques;
- Large speed-up in practice.
Future works

- New algorithms for other problems;
- Not only graph problems;
- Study limit of the model (lower bounds).
Thanks!
Personalized PageRank

$PPR(v, z)$ is the probability of visiting z in the following lazy random walk:
- with probability α jumps to v
- with probability $1 - \alpha$ jumps to a random neighbor
Personalized PageRank

$PPR(v, z)$ is the probability of visiting z in the following lazy random walk:
- with probability α jumps to v
- with probability $1 - \alpha$ jumps to a random neighbor
$PPR(v, z)$ is the probability of visiting z in the following lazy random walk:
- with probability α jumps to v
- with probability $1 - \alpha$ jumps to a random neighbor
Personalized PageRank

$PPR(v, z)$ is the probability of visiting z in the following lazy random walk:
- with probability α jumps to v
- with probability $1 - \alpha$ jumps to a random neighbor
Personalized PageRank

\(PPR(v, z) \) is the probability of visiting \(z \) in the following lazy random walk:
- with probability \(\alpha \) jumps to \(v \)
- with probability \(1 - \alpha \) jumps to a random neighbor
Personalized PageRank

$PPR(v, z)$ is the probability of visiting z in the following lazy random walk:
- with probability α jumps to v
- with probability $1 - \alpha$ jumps to a random neighbor
Personalized PageRank

$PPR(v, z)$ is the probability of visiting z in the following lazy random walk:
- with probability α jumps to v
- with probability $1 - \alpha$ jumps to a random neighbor
Personalized PageRank

Nice property \[\text{[Jeh and Widom WWW03]}\]

\[
PPR_{G \cup G_u}(v, z) = (1 - \alpha)d_{G \cup G_u}(y)^{-1} \sum_{y \in N(z)} PPR_{G \cup G_u}(v, y) + \alpha 1_v
\]
Personalized PageRank

Nice property \[\text{[Jeh and Widom WWW03]}\]

\[
PPR_{G \cup G_u}(v, z) = (1 - \alpha) d_{G \cup G_u}(y)^{-1} \sum_{y \in N(z)} PPR_{G \cup G_u}(v, y) + \alpha 1_v
\]
Personalized PageRank

Nice property [Jeh and Widom WWW03]

\[PPR_{G\cup G_u}(v, z) = (1 - \alpha)d_{G\cup G_u}(y)^{-1} \sum_{y\in N(z)} PPR_{G\cup G_u}(v, y) + \alpha 1_v \]

We don’t have it
Personalized PageRank

Nice property [Jeh and Widom WWW03]

\[PPR_{G \cup G_u}(v, z) = (1 - \alpha) d_{G \cup G_u}(y)^{-1} \sum_{y \in N(z)} PPR_{G \cup G_u}(v, y) + \alpha 1_v \]

Simple heuristic:

\[PPR_{G \cup G_u}(v, z) \approx (1 - \alpha) d_{G \cup G_u}(y)^{-1} \sum_{y \in N(z)} PPR_G(v, y) + \alpha 1_v \]

Using public graph distribution
Social affinity

Which connection is stronger?
Social affinity

Which connection is stronger?
It is important to consider the number of paths and their lengths
Social affinity

$A_\theta(v, w)$ is the maximum fraction of edges that it is possible to delete and still have v and w connected with probability at least θ
Social affinity

How can we compute it?
Social affinity

How can we compute it? [Panigrahy et al. WSDM12]
For each $p \in [0, 1 + \epsilon, (1 + \epsilon)^2, \ldots]$ for $\log n$ delete the edge in the graph with probability p. Store for each node the component ids
Social affinity

How can we compute it? [Panigrahy et al. WSDM12]
For each $p \in [0, 1 + \epsilon, (1 + \epsilon)^2, \ldots]$ for $\log n$ delete the edge in the graph with probability p. Store for each node the component ids
Social affinity

How can we compute it? [Panigrahy et al. WSDM12]
For each $p \in [0, 1 + \epsilon, (1 + \epsilon)^2, \ldots]$ for $\log n$ delete the edge in the graph with probability p. Store for each node the component ids.
Social affinity

How can we compute it? [Panigrahy et al. WSDM12]
For each \(p \in [0, 1 + \epsilon, (1 + \epsilon)^2, \ldots] \) for \(\log n \) delete the edge in the graph with probability \(p \). Store for each node the component ids.

With \(\log n \) samples we can estimate the connection probability.
Social affinity

Using sketches of size $\log^2 n$ per node we can estimate affinity.
Social affinity

Using sketches of size $\log^2 n$ per node we can estimate social affinity. When we add G_u we have to update the sketches, it is enough to update the connected components!