
Efficient Algorithms
for Public-Private
Social Networks

KDD2015 — Sydney, Australia — August 11, 2015

Flavio Chierichetti
Sapienza University

Alessandro Epasto
Brown University

Ravi Kumar
Google

Silvio Lattanzi
Google

Vahab Mirrokni
Google

Idealized vision

Private-Public networks

Reality

Private-Public networks

My friends
are

private

Reality

Private-Public networks

My friends
are

private

A
C

B

Reality

Private-Public networks

My friends
are

private

Only my friends
can see my

friends

Reality

Private-Public networks

My friends
are

private

Only my friends
can see my

friendsA

C

BD

Reality

Private-Public networks
We are
a private

group

My friends
are

private

Only my friends
can see my

friends

Reality

Private-Public networks
~ 5 2 % o f N Y C
Facebook users hide
their friends

We are
a private

group

My friends
are

private

Only my friends
can see my

friends

Reality

Private-Public networks
~ 5 2 % o f N Y C
Facebook users hide
their friends

Only my friends
can see my

friends

We are
a private

group

My friends
are

private

There is no such thing as the Social Network!

Social network of

Each user has his/her own personal Social Network!

User A

User A

Social network of

User B

Each user has his/her own personal Social Network!

User B

User A

Computational implication

The algorithms need to respect the privacy of the
users.

We can only use the data that the user can access.

Naively, we need to run the algorithms once for each
user on a different (and huge) graph!

Application: Friend suggestion
Network signals are very useful 
 Number of common neighbors
 Personalized PageRank, etc.

A

My friends
are

private

B D

C

Application: Friend suggestion

A

My friends
are

private

B D

C

Common Neighbors - Ideal World
 1) Run the algorithm (in parallel) on the graph G
 2) For each user suggest top k users by common
 neighbors.

… but there is no such graph G.

Application: Friend suggestion

A

My friends
are

private

B D

C

Common Neighbors - Real World
 Multiple graphs = Multiple answers!
 How many common neighbors do B and C have?

A

Answer for

One common
neighbor: me!

Application: Friend suggestion

A

My friends
are

private

B D

C

Answer for

Zero common
neighbors!

B

We cannot suggest C to B as friends based on common
neighbors!

Common Neighbors - Real World
 Multiple graphs = Multiple answers!
 How many common neighbors do B and C have?

1) Running the algorithms N times is infeasible
2) Ignoring all private data is very ineffective!

Naive approaches

A

My friends
are

private

B D

C
E

From user A’s
prospective

there are
interesting

signals

E and D are good suggestions!

Naive approaches

A

My friends
are

private

B D

C
E

From public
data

prospective
there are

no signals!

No suggestions for the user!

1) Running the algorithms N times is infeasible
2) Ignoring all private data is very ineffective!

Public-Private
Graph Model

There is a public graph

Private-Public model

G

There is a public graph in addition every node has
access to a private graph

Private-Public model

G

u

u
Gu

u

Gu

We assume the private graph to be at <= 2 hops from . u

For each we would like to execute computation on

Private-Public model

u

u
G [Gu

For each we would like to execute computation on

Private-Public model

u

u
G [Gu

This respects the privacy of each user.

We want the computation to be efficient.

Two-Steps Approach

Precompute data structure for so that we can
solve problems in efficiently.

G
G [Gu

Preprocessing

Synopsis ofPublic Graph
+

u

Query for user

Private Graph Gu

Output for User

fast computation

G G

u

u

Private-Public problem

Ideally.

Preprocessing time:

Preprocessing space:

Query time:

Õ (|VG|)

Õ (|EG|)

Õ (|EGu |)

Warm-up: # connected components

Warm-up: # connected components

Precompute component IDs in G

A
A

A
A

A
A

A

B

B

B

B

B

C

C

C

C

Warm-up: # connected components

Add private edges and merge conn. components

A
A

A
A

A
A

A

B

B

B

B

B

C

C

C

C

Warm-up: # connected components

Add private edges and merge conn. components.

A

B

A

Algorithms 
 Reachability
 Approximate All-pairs shortest paths
 Correlation clustering

 Social affinity

Heuristics
 Personalized PageRank
 Centrality measures

Results

Algorithms 
 Reachability
 Approximate All-pairs shortest paths
 Correlation clustering

 Social affinity

Heuristics
 Personalized PageRank
 Centrality measures

Results

Reachability

u

How many nodes can I reach from u?

Reachability

How many nodes can I reach from u?

u

 We have to handle overlaps.

Reachability

Key idea: use size-estimation sketch [Cohen JCSS97]

Every node samples a random number between [0,1]

0.1

0.9

0.5

0.20.3

0.33

0.23

Reachability

Key idea: use size-estimation sketch [Cohen JCSS97]

Every node samples a random number between [0,1].

Look at the k-th smallest value, use it to estimate the size of the set.

0.1

0.9

0.5

0.20.3

0.33

0.23

[0.1, 0.2]

Reachability

Key idea: use size-estimation sketch [Cohen JCSS97]

Every node samples a random number between [0,1].

Look at the k-th smallest value, use it to estimate the size of the set.

Composable sketch of size k.

0.1

0.9

0.5

0.20.3

0.33

0.23

0.7

0.5

0.9

0.33

0.15
[0.15, 0.2]

[0.1, 0.2]

Reachability

Key idea: use size-estimation sketch [Cohen JCSS97]

Every node samples a random number between [0,1].

Look at the k-th smallest value, use it to estimate the size of the set.

Composable sketch of size k.

0.1

0.9

0.5

0.20.3

0.33

0.23

0.7

0.5

0.9

0.33

0.15
[0.15, 0.2]

[0.1, 0.2]
[0.1, 0.15]

Reachability

 How many nodes can I reach from u?

u

Precompute sketches for each node in public graph.

[0.1, 1.0]

[0.7, 1.0]

[0.2, 0.3]

[0.8, 1.0]

Reachability

u

Compose sketches of nodes reachable in private graph.

[0.1, 1.0]

[0.7, 1.0]

[0.2, 0.3]

[0.8, 1.0]

[0.1, 0.2]

 How many nodes can I reach from u?

Experiments Personalized PageRank

Approximating the PPR stationary distribution.

Up to 4 orders of magnitudes faster naive approach.

Conclusions

 New model for practical problems;

 Some algorithms designed using sampling and 
 sketching techniques;

 Large speed-up in practice.

Future works

 New algorithms for other problems;

 Not only graph problems;

 Study limit of the model (lower bounds).

Thanks!

Personalized PageRank

 is the probability of visiting in the following
 lazy random walk:
 - with probability jumps to
 - with probability jumps to a random neighbor

PPR(v, z)

↵
1� ↵

v

z

v

 is the probability of visiting in the following
 lazy random walk:
 - with probability jumps to
 - with probability jumps to a random neighbor

Personalized PageRank

PPR(v, z)

↵
1� ↵

v

z

v

 is the probability of visiting in the following
 lazy random walk:
 - with probability jumps to
 - with probability jumps to a random neighbor

Personalized PageRank

PPR(v, z)

↵
1� ↵

v

z

v

 is the probability of visiting in the following
 lazy random walk:
 - with probability jumps to
 - with probability jumps to a random neighbor

Personalized PageRank

PPR(v, z)

↵
1� ↵

v

z

v

 is the probability of visiting in the following
 lazy random walk:
 - with probability jumps to
 - with probability jumps to a random neighbor

Personalized PageRank

PPR(v, z)

↵
1� ↵

v

z

v

 is the probability of visiting in the following
 lazy random walk:
 - with probability jumps to
 - with probability jumps to a random neighbor

Personalized PageRank

PPR(v, z)

↵
1� ↵

v

z

v

 is the probability of visiting in the following
 lazy random walk:
 - with probability jumps to
 - with probability jumps to a random neighbor

Personalized PageRank

PPR(v, z)

↵
1� ↵

v

z

v

Nice property [Jeh and Widom WWW03]

Personalized PageRank

v

PPRG[Gu(v, z) = (1� ↵)dG[Gu(y)
�1

X

y2N(z)

PPRG[Gu(v, y) + ↵1v

Nice property [Jeh and Widom WWW03]

Personalized PageRank

v

PPRG[Gu(v, z) = (1� ↵)dG[Gu(y)
�1

X

y2N(z)

PPRG[Gu(v, y) + ↵1v

Nice property [Jeh and Widom WWW03]

Personalized PageRank

v

PPRG[Gu(v, z) = (1� ↵)dG[Gu(y)
�1

X

y2N(z)

PPRG[Gu(v, y) + ↵1v

We don’t have it

Nice property [Jeh and Widom WWW03]

Simple heuristic:

Personalized PageRank

v

PPRG[Gu(v, z) = (1� ↵)dG[Gu(y)
�1

X

y2N(z)

PPRG[Gu(v, y) + ↵1v

PPRG[Gu(v, z) ⇡ (1� ↵)dG[Gu(y)
�1

X

y2N(z)

PPRG[Gu(v, y) + ↵1vPPRG[Gu(v, z) ⇡ (1� ↵)dG[Gu(y)
�1

X

y2N(z)

PPRG[Gu(v, y) + ↵1v

Using public graph
distribution

Social affinity

Which connection is stronger?

Social affinity

Which connection is stronger?
It is important to consider the number of paths and their
lengths

Social affinity

 is the maximum fraction of edges that it is
possible to delete and still have and connected with
probability at least

v

w

A✓(v, w)
v w

✓

Social affinity

 How can we compute it?

v

w

Social affinity

 How can we compute it? [Panigrahy et al. WSDM12]
 For each for delete the
 edge in the graph with probability . Store for each node
 the component ids

v

w

p 2 [0, 1 + ✏, (1 + ✏)2, . . .] log n
p

Social affinity

 How can we compute it? [Panigrahy et al. WSDM12]
 For each for delete the
 edge in the graph with probability . Store for each node
 the component ids

v

w

p 2 [0, 1 + ✏, (1 + ✏)2, . . .] log n
p

[C,

[B,

A

B C

Social affinity

 How can we compute it? [Panigrahy et al. WSDM12]
 For each for delete the
 edge in the graph with probability . Store for each node
 the component ids

v

w

p 2 [0, 1 + ✏, (1 + ✏)2, . . .] log n
p

[C, A

[B, A

A

B

C

Social affinity

 How can we compute it? [Panigrahy et al. WSDM12]
 For each for delete the
 edge in the graph with probability . Store for each node
 the component ids

v

w

p 2 [0, 1 + ✏, (1 + ✏)2, . . .] log n
p

[C, A,…

[B, A,…

With
samples
we can

estimate the
connection
probability

log n

Social affinity

 Using sketches of size per node we can estimate
 affinity.

v

w [C, A,…

[B, A,…

log

2 n

Social affinity

 Using sketches of size per node we can estimate
 social affinity.
 When we add we have to update the sketches, it is
 enough to update the connected components!

v

w [C, A,…

[B, A,…

log

2 n

Gu

