Efficient Algorithms for Public-Private Social Networks

Flavio Chierichetti Sapienza University Alessandro Epasto Brown University Ravi Kumar Google Silvio Lattanzi Google Vahab Mirrokni Google

KDD2015 — Sydney, Australia — August 11, 2015

Idealized vision

There is no such thing as the Social Network!

User A

Each user has his/her own personal Social Network!

User B

Each user has his/her own personal Social Network!

Computational implication

The algorithms need to respect the privacy of the users.

We can only use the data that the user can access.

Naively, we need to **run** the algorithms **once** for **each** user on a **different** (*and huge*) graph!

Application: Friend suggestion

20

Network signals are very useful Number of common neighbors Personalized PageRank, etc.

Application: Friend suggestion

Common Neighbors - Ideal World

- 1) Run the algorithm (in parallel) on the graph G
- 2) For each user suggest top k users by common neighbors.

... but there is no such graph G.

2

Common Neighbors - Real World Multiple graphs = Multiple answers! How many common neighbors do B and C have?

2

Common Neighbors - Real World Multiple graphs = Multiple answers! How many common neighbors do B and C have?

We **cannot** suggest C to B as friends based on common neighbors!

Naive approaches

Running the algorithms N times is infeasible
Ignoring all private data is very ineffective!

Naive approaches

Running the algorithms N times is infeasible
Ignoring all private data is very ineffective!

From public data prospective there are no signals!

No suggestions for the user!

Public-Private Graph Model

There is a public graph G

There is a public graph G in addition every node u has access to a private graph G_u

We assume the private graph to be at ≤ 2 hops from u.

For each u we would like to execute computation on $G \cup G_u$

For each u we would like to execute computation on $G \cup G_u$

This respects the privacy of each user.

We want the computation to be efficient.

Two-Steps Approach

Precompute data structure for G so that we can solve problems in $G \cup G_u$ efficiently.

Private-Public problem

Ideally.

Preprocessing time: $\tilde{O}(|E_G|)$

Preprocessing space: $\tilde{O}(|V_G|)$

Query time: $\tilde{O}(|E_{G_u}|)$

Precompute component IDs in G

Add private edges and merge conn. components

Add private edges and merge conn. components.

Results

Algorithms

Reachability Approximate All-pairs shortest paths Correlation clustering Social affinity

Heuristics

Personalized PageRank

Centrality measures

Results

Algorithms

Reachability

Approximate All-pairs shortest paths Correlation clustering

Social affinity

Heuristics

Personalized PageRank

Centrality measures

How many nodes can I reach from u?

How many nodes can I reach from u?

We have to handle overlaps.

Key idea: use size-estimation sketch [Cohen JCSS97]

Every node samples a random number between [0,1]

Key idea: use size-estimation sketch [Cohen JCSS97]

Every node samples a random number between [0,1].

Look at the **k-th smallest value**, use it to estimate the size of the set.

Key idea: use size-estimation sketch [Cohen JCSS97]

Every node samples a random number between [0,1].

Look at the **k-th smallest value**, use it to estimate the size of the set.

Composable sketch of size **k**.

Key idea: use size-estimation sketch [Cohen JCSS97] [0.1, <u>0.15</u>] [0.1, <u>0.2</u>] [0.15, <u>0.2</u>] 0.5 0.5 0.23 0.15 0.33 0.33 0.9 0.2 0.9 0.3 0.7 0.1

Every node samples a random number between [0,1].

Look at the **k-th smallest value**, use it to estimate the size of the set.

Composable sketch of size **k**.

How many nodes can I reach from u?

Precompute sketches for each node in public graph.

How many nodes can I reach from u?

Compose sketches of nodes reachable in private graph.

Experiments Personalized PageRank

Approximating the **PPR** stationary distribution.

Graph	A/B	Cosine
DBLP	6.5e-3	99.8%
LIVEJOURNAL	3.5e-4	99.1%
Orkut	1.6e-3	99.9%
YouTube	1.7e-2	99.8%

Up to 4 orders of magnitudes faster naive approach.

Conclusions

New model for practical problems;

Some algorithms designed using sampling and sketching techniques;

Large speed-up in practice.

Future works

New algorithms for other problems;

Not only graph problems;

Study limit of the model (lower bounds).

Thanks!

PPR(v, z) is the probability of visiting z in the following lazy random walk:

- with probability $\,\alpha\,$ jumps to $\,v\,$

PPR(v, z) is the probability of visiting z in the following lazy random walk:

- with probability $\,\alpha\,$ jumps to $\,v\,$

PPR(v, z) is the probability of visiting z in the following lazy random walk:

- with probability $\,\alpha\,$ jumps to $\,v\,$

PPR(v, z) is the probability of visiting z in the following lazy random walk:

- with probability $\,\alpha\,$ jumps to $\,v\,$

PPR(v, z) is the probability of visiting z in the following lazy random walk:

- with probability $\,\alpha\,$ jumps to $\,v\,$

PPR(v, z) is the probability of visiting z in the following lazy random walk:

- with probability $\,\alpha\,$ jumps to $\,v\,$

PPR(v, z) is the probability of visiting z in the following lazy random walk:

- with probability $\,\alpha\,$ jumps to $\,v\,$

Nice property [Jeh and Widom WWW03]

$$PPR_{G\cup G_u}(v,z) = (1-\alpha)d_{G\cup G_u}(y)^{-1}\sum_{y\in N(z)}PPR_{G\cup G_u}(v,y) + \alpha \mathbf{1}_{\mathbf{v}}$$

Nice property [Jeh and Widom WWW03]

$$PPR_{G\cup G_u}(v,z) = (1-\alpha)d_{G\cup G_u}(y)^{-1}\sum_{y\in N(z)}PPR_{G\cup G_u}(v,y) + \alpha \mathbf{1}_{\mathbf{v}}$$

Nice property [Jeh and Widom WWW03]

$$PPR_{G\cup G_u}(v,z) = (1-\alpha)d_{G\cup G_u}(y)^{-1}\sum_{y\in N(z)}PPR_{G\cup G_u}(v,y) + \alpha \mathbf{1}_{\mathbf{v}}$$

We don't have it

Nice property [Jeh and Widom WWW03]

$$PPR_{G\cup G_u}(v,z) = (1-\alpha)d_{G\cup G_u}(y)^{-1}\sum_{y\in N(z)}PPR_{G\cup G_u}(v,y) + \alpha \mathbf{1}_{\mathbf{v}}$$

Simple heuristic:

Which connection is stronger?

Which connection is stronger? It is important to consider the number of paths and their lengths

 $A_{\theta}(v, w)$ is the maximum fraction of edges that it is possible to delete and still have v and w connected with probability at least θ

How can we compute it?

Using sketches of size $\log^2 n$ per node we can estimate affinity.

Using sketches of size $\log^2 n$ per node we can estimate social affinity. When we add G_u we have to update the sketches, it is

enough to update the connected components!

