
Reduce and Aggregate: Similarity Ranking in
Multi-Categorical Bipartite Graphs

Alessandro Epasto∗

Sapienza University of Rome
epasto@di.uniroma1.it

Jon Feldman
Google Research

jonfeld@google.com

Silvio Lattanzi
Google Research

silviol@google.com

Stefano Leonardi†
Sapienza University of Rome

leon@dis.uniroma1.it

Vahab Mirrokni
Google Research

mirrokni@google.com

ABSTRACT

We study the problem of computing similarity rankings in
large-scale multi-categorical bipartite graphs, where the two
sides of the graph represent actors and items, and the items
are partitioned into an arbitrary set of categories. The prob-
lem has several real-world applications, including identifying
competing advertisers and suggesting related queries in an
online advertising system or finding users with similar inter-
ests and suggesting content to them. In these settings, we
are interested in computing on-the-fly rankings of similar
actors, given an actor and an arbitrary subset of categories
of interest. Two main challenges arise: First, the bipartite
graphs are huge and often lopsided (e.g. the system might
receive billions of queries while presenting only millions of
advertisers). Second, the sheer number of possible combi-
nations of categories prevents the pre-computation of the
results for all of them.

We present a novel algorithmic framework that addresses
both issues for the computation of several graph-theoretical
similarity measures, including # common neighbors, and
Personalized PageRank. We show how to tackle the imbal-
ance in the graphs to speed up the computation and provide
efficient real-time algorithms for computing rankings for an
arbitrary subset of categories.

Finally, we show experimentally the accuracy of our ap-
proach with real-world data, using both public graphs and
a very large dataset from Google AdWords.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data mining ; E.1 [Data Structures]: Graphs and net-

∗Work partially done while intern at Google Inc. Supported
by a Google Europe PhD Fellowship in Algorithms, 2011.
†This work was done while visiting scientist at Google Inc.
Work partially supported from EU FET project MULTI-
PLEX 317532.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2744-2/14/04.
http://dx.doi.org/10.1145/2566486.2568025.

works; G.2.2 [Discrete Mathematics]: Graph Theory—
Graph algorithms; H.3.5 [Information Storage and Re-
trieval]: Online Information Services—Web-based services

Keywords

Similarity Ranking; Graph Mining; Bipartite Graphs; Per-
sonalized PageRank; Random Walks; Markov Chain.

1. INTRODUCTION
Web server log data represents a valuable source of infor-

mation for understanding global behavior of users. Implicit
knowledge extracted from such data can be exploited to bet-
ter understand and thus satisfy user needs. This practice of
web usage mining requires the collection of data from vari-
ous sources, including user profiles, query logs of web search
engines, toolbar navigation logs, geo-referenced data, data
provided from advertisers and social network data [8, 25, 31,
34, 39] Statistical and data-mining methods (e.g., cluster-
ing, classification, ranking, association rules, and sequential
pattern discovery) may be employed to detect interesting
patterns and connections between users [18, 21, 23].

A fundamental task of web usage mining is to identify
users that exhibit common traits, as can be detected from
relationships and patterns of interaction with web appli-
cations. This problem has several real-world applications,
including identifying competing advertisers and suggesting
related queries in an online advertising system [8], or find-
ing users with similar interests and suggesting content to
them [30]. Graphs provide a universal language to repre-
sent relationships between entities and often the different
roles of the entities are described by partitioning the nodes
of the graphs into different categories. We can represent
users/actors on one side of the graph and the items repre-
senting data collected from application logs on the other side
of the graph. Actors are connected to those items that de-
scribe their web usage patterns. Graphs are often labeled on
nodes or on edges in order to describe the type and context
of the connection or the strength of the interaction.

One major bottleneck to the exploitation of web usage
mining is given by the massive amount of data collected
even from individual users. As web experience spans most of
everyday life, the potential for data collection across differ-
ent applications, contexts and platforms is almost unlimited.
Coping with the heterogeneity and sheer size of this data is
a huge challenge for creating more sophisticated personal-
ized services. These graphs are highly unbalanced given the

349

amount of data we can collect for each individual user. For
example, in a graph we constructed out of Google Adwords
data, one side (queries) is bigger than the other side (ad-
vertisers) by a factor of at least 1000. The challenge in this
setting is to perform mining tasks on data with complex-
ity proportional only to the size of the smaller side of the
graph, while still preserving the information from the large
side that is relevant for one’s purposes.

Another important feature is that web usage data are
often multi-categorical, as they have been collected from
different applications, platforms and contexts. Entities are
classified through labels into several categories that are of-
ten disjoint (queries, URLs, geo data, opinions, etc.). We
are interested in mining relationships between users within
in each category; however, it is even more important to mine
relationships between users across categories in order to per-
sonalize services in a more effective way.

Our motivating application is finding related online adver-
tisers. Online advertising campaigns are launched on many
market segments. Each market segment is represented by a
group of entities (search queries, publisher sites, etc.). Con-
sider for example an advertiser that is targeting the market
segments of sport, motors and travel. An industry analyst
might like to know the top competitors of that advertiser
in each market segment; or, perhaps, on the combination of
travel and motors. Further analysis of this graph could also
yield insight on entities that the advertiser is missing from
their targeting set.

1.1 Our contribution
We study the problem of computing personalized similar-

ity rankings in large-scale multi-categorical bipartite graphs.
We represent users and data in a bipartite graph G(A∪B,E)
where A is the set of actors, B is a set of items, E is the set
of edges connecting actors to items. The set B of items is
partitioned, based on labels, into a set of disjoint categories
C. More formally, ∀b ∈ B, ∃C ∈ C such that b ∈ C and
∀C′, C′′ ∈ C if C′ ∩ C′′ 6= ∅ then C′ = C′′.

Given one actor a ∈ A and a subset D = {C1, . . . , Cc} ⊆ C
of categories, our goal is to rank actors of A by similarity
to actor a according to subset D. This task corresponds to
ranking actor set A by similarity to a in the graph induced
by vertex set {A ∪ C1 ∪ . . . ∪ Cc}.

We face two main problems. First, the bipartite graph is
lopsided, with the item side B bigger by orders of magni-
tude than the actor side A. It is of crucial importance to
reduce the analysis to a subgraph limited by the size of A.
Secondly, since 2|C| could be quite large, it is prohibitive to
pre-compute a personalized similarity ranking for each actor
a ∈ A and each subset D ⊆ C. We would like to pre-compute
the minimum amount of information needed to answer on
the fly a personalized similarity ranking on a specific subset
of categories. We address these two challenges as follows.

We provide a novel framework for similarity ranking in
multi-categorical data. Our framework is based on the two
operators reduce

⊙

and aggregate
⊕

. The operator
⊙

computes a reduced version of the graph induced from nodes
A ∪ Ci for each category Ci ∈ C. The size of the resulting
graph depends only on the actor set A. The operator aggre-
gate

⊕

computes a ranking of actor set A by similarity to
a ∈ A in the graph A∪C1∪ . . .∪Cc; this is achieved via fast
aggregation of the information stored in the reduced graph
of each individual category. A key property of

⊙

is that the

reduced graphs computed on the individual categories allow
us to answer personalized queries for each actor a ∈ A and
any subset of categories D ⊆ C.

Our framework is general and versatile. In this work we
apply it under several similarity metrics: neighbor inter-
section, Jaccard coefficient, Adamic-Adar [3], Katz coeffi-
cient [17] and Personalized PageRank [5]. This is especially
challenging for Personalized PageRank since it requires the
use of methods from the fields of stochastic complementation
and Markov chain aggregation [26].

Finally, we present extensive experimental results on three
datasets: Query-Ads from Google AdWords [2], Authors-
Publications from a DBLP dataset [1], Inventors-Patents
from a US patent dataset [14]. The reduce operator is able
to reduce the size of the graph, in term of number of nodes,
by a factor of 2.5 in the smaller DBLP and Patent datasets,
up to a factor of > 90 and > 750 in our largest Query-Ads
graphs. We evaluate the effectiveness of our similarity rank-
ings in terms of precision and recall against ground truth
data from each dataset. In all our datasets, Personalized
PageRank and Katz similarity provide a good level of pre-
cision/recall. Intersection and Adamic-Adar rank immedi-
ately after while the Jaccard coefficient under-performs all
the other measures. To evaluate the precision of our Per-
sonalized PageRank approximation we compare (on several
well-known similarity measures) the values computed from
the iterative algorithm to the exact values, showing a fast
convergence in few iterations of the iterative algorithm.

2. RELATED WORK
The problem of mining bipartite graphs has received a

lot of attention recently. Bipartite graphs can be mined to
extract insightful information concerning the relationships
between, for instance, keywords and advertisers [8]; queries
and websites [25, 39]; words and documents [12]; stocks and
financial ratios [32]; gene expression and experiment condi-
tions [24].

Several authors have addressed the problem of identify-
ing relevant nodes in bipartite graphs. Deng et al. [11] in-
troduced Co-HITS, a framework for mining bipartite graphs
that incorporates content information on the nodes and that
generalizes both HITS [18] and Personalized PageRank [15].
Recently, Wu et al. [39] addressed the problem of integrat-
ing click-through bipartite graphs and document features to
learn the similarity between documents and queries. Mei et
al. [25] employed hitting time based similarity measures to
identify related queries from search engine logs. On a re-
lated topic, Ng et al. [28] designed a framework, based on
the solution of tensor equations, to rank both entities and
relations where the relations can belong to multiple types.

Contrary to these works, we focus on similarity functions
that can scale to billion-node graphs on parallel systems (like
MapReduce [10]), in our multi-category settings. The simi-
larity functions we analyze, which include Adamic-Adar [3],
Katz [17] and Personalized PageRank [15], have received at-
tention in the field of information retrieval for several pur-
poses, including predicting link formation [23].

A related topic to similarity in bipartite graphs is co-
clustering (a.k.a. bi-clustering); i.e. grouping together nodes
on the two sides of the graph that are related. Several au-
thors [12, 13, 27] have tackled this problem, which can be
also modeled as an instance of matrix partitioning [4, 12].
In this context, Dhillon [12] introduced a method based

350

on spectral partitioning for the co-clustering of bipartite
graphs representing documents and words. Mirzal and Fu-
rukawa [27] addressed the connections between co-clustering
in bipartite graphs and clustering in unipartite graphs. Anag-
nostopoulos et al. [4] provided approximation algorithms
and NP-hardness results for some definitions of co-clustering.
Another relevant direction in this context is given by the
study of heterogeneous networks [41], where the relation-
ships between the entities modeled in the graph are obtained
by several different sources.

Finally, another relevant topic to our work is the large
body of literature on Markov chain state aggregation [20,
26, 35], jump-started by the work of Simon and Ado [33] on
Nearly Completely Decomposable chains, which we build on
for our Personalized PageRank aggregation algorithm.

Several works have employed such approaches in the con-
text of random walks. Broder et al. [7] applied similar tech-
niques to speed up the computation of PageRank on web-
sites. Parreira et al. [29] applied state aggregation meth-
ods to the distributed computation of the PageRank of web
pages in a peer-to-peer system where web hosts meet to ex-
change the results of local computations and to converge
to the global scores. Other works focused on updating the
PageRank in dynamic graphs [9, 22] and to approximate the
PageRank score in local domains [40]. Recently, Vattani et
al. [36] studied the closely related problem of preserving the
Personalized PageRank score on a subgraph. In our work we
apply similar techniques, however their approach cannot be
directly applied to our context as their algorithm introduces
of a sink node in the reduced subgraph which violates the as-
sumption of disjointness that is necessary in our framework,
as we explain later in the paper.

3. COMPUTINGSIMILARITYRANKINGS

IN BIPARTITE GRAPHS
We present a general approach to computing similarity

rankings in bipartite graphs under various similarity met-
rics. The approach is based on the definition of a reduction
operator

⊙

and an aggregation operator
⊕

for each of the
measures of interest.

Before starting to describe the technical contribution of
the paper we give some useful definition. Let G = (A∪B,E)
be a weighted undirected bipartite graph with non negative
edge weights w : E → ℜ≥0. Denote by N(a,G) = {b ∈
B : (a, b) ∈ E} the neighbor set of node a ∈ A in graph G
and by N(b,G) = {a ∈ A : (a, b) ∈ E} the neighbor set of
a node b ∈ B in graph G. We also denote by sima(b,G),
a, b ∈ A a measure of similarity of node b with respect to
node a in graph G. The A-node ranking of node a in graph
G is obtained by sorting in decreasing order of sima(·, G)
the nodes in the A side. We omit graph G when clear from
the context.

Given these definitions we can now describe our approach.
We recall that the first challenge for our problem is that the
huge size of the node set B makes the computation of simi-
larity rankings in G = (A∪B,E) very expensive. This rules
out real-time algorithms, and requires the use of extensive
large-scale pre-computation (using MapReduce, for exam-
ple). We address this issue by showing that it is possible
to keep the complexity of the algorithms dependent only on
the smaller side A for all the measures of our interest. For
this purpose we introduce the reduction operator

⊙

.

a

b

c

a b

c

c

a

b

a

c

1)

b

2)

3)

Figure 1: Idealized representation of the framework.

The reduction operator
⊙

takes as input the entire bipar-
tite graph and produces as output, for each category in iso-
lation, a compact representation of the information needed
to compute the similarity rankings in that category. This
is obtained by computing a new graph only on the nodes in
A for each subgraph Gi = G[A ∪ Ci] using large scale com-
putations in MapReduce. We stress that after a phase of
preprocessing needed for the implementation of the reduce
operator, all other stages of the algorithm will only depend
on the size of the set A of nodes.

The problem of designing the operator
⊙

is formally de-
fined as follows:

Problem 1. Given a bipartite graph G = (A ∪ B,E) and
a similarity function sim, compute a new weighted graph
Ĝ(A,E) and a new similarity measure sim∗ such that, ∀a, b ∈

A, sima(b,G) = sim∗
a(b, Ĝ).

We use Ĝi[A∪Ci] to denote the reduced graph, with only

A nodes, computed on G[A∪Ci]. We indicate Ĝi[A∪Ci] by

Ĝi when clear from the context. Once we have defined the
reduction operator, for each category Ci we can first reduce
the graph and then compute the similarity measure between
any two nodes.

Our second challenge is the real-time processing of multi-
categorical aggregation. This task is problematic because
of the number of possible subsets of C that makes the pre-
computation of rankings infeasible. For this purpose we de-
fine the operator

⊕

that uses the information produced by
the operator

⊙

, aggregating over a given subset of C to
obtain an exact (or approximate) ranking for a given node
a ∈ A. This phase must be implemented by a fast (e.g., a
few seconds) algorithm. We formally define the aggregation
problem:

Problem 2. Given an arbitrary subset of categories D =
{C′

1, . . . , C
′
c} and reduced graphs Ĝi[A∪Ci]. Let G

′ = G[A∪
C′

1 ∪ · · · ∪ C′
c] be the induced subgraph of G. For a node

a ∈ A, compute efficiently the similarity ranking sima(·, G
′).

The approach formed by the operators
⊙

and
⊕

is picto-
rially described in Figure 1, showing the aggregation of the
“red” and “green” categories.

In the following subsections we design the two operators
that solve Problems 1 and 2 for several measures of node
similarity. We present the measures in increasing order of
complication, from measures defined on the neighborhoods
of nodes to measures involving by the computation of paths
between nodes.

3.1 Neighbor intersection
The first notion that we introduce is the number of com-

mon neighbors. More precisely:

INTa(b) = |N(a) ∩N(b)|.

351

Reduction. The reduce operator
⊙

computes Ĝ(A,EA),
a weighted graph where the weight of an edge between any
two nodes a, b ∈ A is equal to INTa(b,G) = |N(a) ∩ N(b)|
and the similarity measure sim∗ between two nodes is equal
to the weight of the edge between them, INT∗

a(b) = w(a, b).
Note that the construction of such a graph requires time

in the order of sum of the square of the degree of the nodes
in B, O(

∑

b∈B deg(b)2), which can be quadratic in the worst
case for very high degree nodes. This is the same complex-
ity of the reduction phase for the next algorithms. We make
two observations. First, in many real graphs, most nodes
have low degree and as we observe, the algorithm can scale
to very large dataset (billions of nodes in our experiments).
Second, the computation time of the intersection can be ac-
tually reduced to linear by using well-known min-hashing
techniques for set intersection [6] to build the graph and to
compute the size of the intersection between any two nodes.

Aggregation. For neighbor intersection the aggregation
step is done very efficiently. Since the categories form a par-
tition of node set B, the neighbor intersection on categories
D = {C′

1, . . . , C
′
c} is equal to the sum of neighbor intersec-

tion in each of the categories of D, namely,

INTa(b,G
′) =

∑

Ci∈D

INTa(b,Gi) =
∑

Ci∈D

INT∗
a(b, Ĝi),

with G′ = G[A∪C′
1∪ . . .∪C′

c], Gi = G[A∪Ci] and Ĝi is the
graph obtained by running the reduction operator on Gi.

We finally note that the aggregation operation can be per-
formed easily also after a min-hashing step. In fact the error
will accumulate nicely because we are just using the sum.

3.2 Jaccard coefficient
The Jaccard coefficient of node a with b is defined as the

ratio between the intersection of N(a) with N(b) and the
union of N(a) with N(b). Formally, for each node a ∈ A,
we define the Jaccard coefficient of node a with node b as,

JACa(b) =
|N(a) ∩N(b)|

|N(a) ∪N(b)|
.

Reduction. In this case the reduce operator
⊙

computes

a graph Ĝ(A,EA) with two weights on each edge. In par-
ticular for each pair of nodes a, b we define two weights
w∩(a, b) = |N(a)∩N(b)| and w∪(a, b) = |N(a)∪N(b)|. We

can now define the new similarity measure Jac∗a(b) =
w∩(a,b)
w∪(a,b)

The time complexity of this task is similar to the reduction
step of neighbor intersection, also in this case it is possible
to obtain linear time algorithm using well-know min-hash
techniques [6].

Aggregation. Using the fact that B is a partition, the
aggregation operator on categories D = {C′

1, . . . , C
′
c} for

the Jaccard coefficient similarity of node a is implemented
as follows.

Recall that Gi = G[A ∪ Ci] and that Ĝi is the graph ob-
tained by running the reduction operator on Gi. In the first
step for a given node a we sum the weights w∩ of the node
a edges in the various categories: w∩(a, b) =

∑

Ĝi
w∩

Ĝi
(a, b),

where by wĜi
(·, ·) we denote the weight function w(·, ·) be-

tween two nodes in the graph Ĝi. Similarly w∪(a, b) =
∑

Ĝi
w∪

Ĝi
(a, b).

Then we can compute the Jaccard similarity by simply

dividing the two weights Jaca(b,G
′) = w∩(a,b)

w∪(a,b)
. The correct-

ness of this step follow from the fact that B is a partition.

3.3 Adamic-Adar
The Adamic-Adar similarity [3] metric is defined as

AAa(b) =
∑

x∈N(a)∩N(b)

1

log |N(x)|
.

Adamic-Adar differs from intersection since the weight of
a common neighbor is equal to the inverse of the logarithm
of the degree.

Reduction. The reduce operator for Adamic-Adar is very
similar to the reduction operator for neighbor intersection.
In this case as well we generate a weighted graph Ĝ(A,EA),
where the weight of an edge between any two nodes in a, b ∈
A is equal to AAa(b,G) =

∑

c∈N(a)∩N(b)
1/log |N(c)| and the

similarity measure sim∗ between two nodes is equal to the
weight of the edge between them, AA∗

a(b) = w(a, b). Note
that for Adamic-Adar as well it is possible to implement
this step in linear time using a weighted permutation and
standard hash-min techniques as in [6].

Aggregation. For the aggregation step it is easy to observe
that given that categories are disjoint, we can just sum up
the scores, AAa(b,G

′) =
∑

Ci∈D AA∗
a(b, Ĝi).

Notice that also for this measure the aggregation opera-
tion can be performed easily after a min-hashing step.

3.4 Katz
The KATZβ measure [17], for β ∈ (0, 1), of a with respect

to b is defined as

KATZβ,a(b) =
∞
∑

l=1

βl|PG(a, b, l)|.

with PG(a, b, l) defined as the set of distinct paths of length
exactly l between a and b in graph G.

Reduction. The reduction operator for KATZβ is slightly
more complex than the previous operators. We start by
noticing that the length of any path between two nodes in
A is always even because the graph is bipartite.

This simple observation suggests that we can shrink the
length two paths in single edges, rigorously we build the
weighted graph Ĝ(A,EA) where the weight between two
nodes a, b is equal to the number of 2-steps paths between
them w(a, b) = |N(a)∩N(b)|. To design the similarity func-
tion KATZ∗

β, we note that every even path can be split in a
sequence of length two paths. Furthermore to compute the
multiplicity of even paths of a specific length l it is enough
to consider all the possible sequence of l/2 2-steps paths be-
tween them and multiply their multiplicities.

Using this observation and the fact that the length of a
path between two nodes in A is always even we can define
the new similarity measure as:

KATZ∗
β,a(b) =

∞
∑

i=1

β2i

∑

p∈P
Ĝ
(a,b,i)

(

∏

e∈p

w(e)

)

 .

Aggregation. The aggregation operator for the KATZβ

similarity is impractical because it involves the computation
of paths of possibly infinite length. For this reason we need
to approximate the KATZβ score considering path up to a
specific length.

352

In Section 4.4 we show experimentally that considering
paths up to length 4 gives already a good approximation of
the KATZβ similarity measure. So in this section we focus
on aggregating paths of maximum length 4.

Recall that we define G′ = G[A ∪ C′
1 ∪ . . . ∪ C′

c], Gi =

G[A∪Ci] and that Ĝi is the graph obtained by running the
reduction operator on Gi. Unfortunately in this case it is
not enough to simply aggregate the scores computed in the
categorical graphs Ĝi because those similarity scores take
into account only the paths within a single category but not
the paths across categories. Notice that since length 2 paths
lies inside a single category, this is an issue only for paths
of length 4. We can however compose those paths by a first
length 2 path within a category C′

i and a second length 2
path within a different category C′

j .
Given these considerations we split the length 4 paths

in intra-category paths and inter-category paths. For the
former we can use the same technique of the reduction step,
for the latter we have to pay attention to combine length
2 paths from different categories. More rigorously, we have
that

KATZ∗
β,a(b) = β2

∑

Ci∈D

wĜi
(a, b)

+ β4
∑

Ci∈D

∑

p∈P
Ĝi

(a,b,2)

(

∏

e∈p

w(e)

)

+ β4
∑

Ci,Cj∈D,

Cj 6=Ci

∑

c∈N(a)∪N(b)

wĜi
(a, c)wĜj

(c, b)

 ,

where in the first line we consider all the path of length
2 between a and b, in the second line we consider all the
intra-category paths and in the third line we consider all
the inter-category paths. This computation takes at most
O(deg(a)|D|2) time where |D| is the number of categories
aggregated.

3.5 Personalized PageRank
Finally, we introduce the Personalized PageRank (hence-

forth PPR) similarity measure for node a ∈ A [15].

Definition 1. Let G = (V,E) be a weighted graph and let

a ∈ V , α ∈ (0, 1).
−−→
PPR(G, α, a) is defined as the vector pre-

senting the stationary distribution of the following random
walk on G. The walk starts in node a. At each step, if the
walk is in node x, with probability α it jumps to node a,
otherwise it moves to y ∈ N(x) with the ordinary random

walk transition probability p(x, y) = w(x,y)∑
z∈N(x) w(x,z)

.

Notice that we will use the same notation when G =
(A ∪ B,E) is bipartite. Notice also that, in contrast to
the previous measures, PPR naturally takes into account
weights of the edges.

Now we can define the Personalized PageRank similarity

for the pair of nodes a, b ∈ A as PPRα,a(b) =
−−→
PPR(G,α, a)(b).

In the rest of the section we concentrate on the challenges
of defining the two operators for PPR rankings.

Reduction. The reduction operator for the Personalized
PageRank is a bit more complex than in the other cases.
First we build the weighted graph Ĝ = (A,EA) where the

weights1 of the edges EA are defined as follows ∀x, y ∈ A:

wA(x, y) =
∑

z∈N(x)∩N(y)

w(x, z)w(z, y)
∑

u∈N(z) w(z, u)
.

Notice that for ∀x, y ∈ A the probability of going from a
to b in a 1-step ordinary random walk on Ĝ is the same of
performing a 2-step walk on graph G between them.

Then, to define the similarity measure PPR∗, we first in-
troduce the following Lemma, of which we only sketch the
proof in this paper.

Lemma 1. Let Ĝ = (A,EA) be the weighted graph with
nodes A and weights wA, then

−−→
PPR(G,α, a)[A] =

1

2− α

−−→
PPR(Ĝ, 2α− α2, a),

where
−−→
PPR(G,α, a)[A] is the subvector of

−−→
PPR(G,α, a) con-

taining only the probabilities of nodes in A.

Proof. (Sketch): The ordinary random walks between
A nodes, i.e. without jumps, can be simulated efficiently by
looking at the 2-step random walk transition probabilities
matrix. The PPR walk is however complicated by the pres-
ence of jumps to node a. In particular, at first sight it is
not clear how to capture the fact that a random walk may
restart while visiting a node in B. The definition of sta-
tionary distribution helps us, as intuitively we need only to
compute the fraction of time that the random walk spend in
each node. For this it is enough to capture the probability
that in a 2-step PPR walk we do not jump, which is (1−α)2.
Conversely, the probability of restarting is precisely 2α−α2.
Hence, the PPR stationary distribution conditioned on be-
ing in a node in A is PPR(Ĝ, 2α − α2, a) and to get the
correct distribution we can simply multiply this distribution
with the probability of being in the A side, which can be
proved to be always 1

2−α
in any bipartite graph, irrespec-

tively of the topology.
These intuitions can be formalized using the theory devel-

oped by Meyer in [26].

Using the above Lemma we can now define PPR∗ as

PPR∗
α,a =

1

2− α

−−→
PPR(Ĝ, 2α− α2, a).

Notice that an additional positive by-product of the re-
duction is that each step of a walk in Ĝ represents two steps
in G so any power iteration algorithm will converge twice as
fast.

Aggregation. Similar to the previous measures, we can
apply the

⊙

operator, on the subgraph Gi = G[A∪Ci], for

each subset Ci ∈ C, to produce a graph Ĝi from which we
can compute efficiently the PPR similarity between nodes.
We now show how, based on such graphs we can aggregate
the PPR rankings in each category to compute in an efficient
way the PPR similarity on the subgraph G[A∪C′

1∪ . . .∪C′
c].

We need a few additional information on the structure of
the bipartite graph to proceed in the definition of the

⊕

operator.

Definition 2. For a any given x ∈ A and subset Ci ∈ C,
let us define Ux(Ci) =

∑

y∈N(x)∩Ci
w(x, y).

1The transition matrix on Ĝ = (A,EA) is also known hidden
transition matrix in other works [11].

353

Definition 3. For a any given x ∈ A and subset Ci ∈ C,
let Fx(Ci, Cj) be the probability of reaching any node in
Cj , after performing a 3-step standard random walk, in the
bipartite graph G(A ∪ B,E), starting from the node x and
conditioned to the fact that the first step ends in a node in
Ci.

Notice that both information can be efficiently precom-
puted in MapReduce with at most 3 MapReductions. So, in
our real-time

⊕

operator we assume to possess such values.
For our definition of the

⊕

operator we build on the
iterative aggregation-disaggregation algorithm of Koury et
al. [20].

The main idea behind this algorithm is the following. Con-
sider a Markov chain whose states are partitioned in a family
of disjoint sets S1, S2, . . . Sc and suppose to have an initial
approximation π̄ for the stationary distribution. Let π̄i be
the subvector of π̄ with only values in Si and consider the
c × c transition matrix T between subsets, i.e. the matrix
were Tij is the probability of moving between Si and Sj at
stationary.

Koury et al. [20] show that based on an approximation of
the stochastic matrix T we can obtain an improved approx-
imation of the actual stationary distribution of the system
by a linear combination of the vectors π̄i whose weights are
based on the stationary distribution of T .

This operation can be repeated arbitrary many times2 and
under certain assumptions on the Markov chain described
in details in [20] the algorithm converges in the limit to the
exact stationary distribution.

While a very powerful technique, there are a few key al-
gorithmic challenges that must be overcome to apply this
method to our problem. First of all, in order to approx-
imate the ranking on the subgraph G[A ∪ C′

1 ∪ . . . ∪ C′
c],

we need to aggregate the stationary distributions on subsets
of nodes G1 = G[A ∪ C′

1], . . ., Gc = G[A ∪ C′
c] that are

not disjoint. So we cannot apply directly the results in the
Markov chain state aggregation theory [26] as they rely on
the disjointness of the sets of states aggregated. Second, we
want to implement the

⊕

operator as a real-time algorithm,
which means that all the computations depending on the ac-
tual classes C′

1, . . . , C
′
c aggregated, which are only known at

the run-time, must be as efficient as possible.
We address both issues and adapt the algorithm of Koury

et al. to solve our problem by relying on a series of results
that we postpone at the end of this section for sake of the
presentation. We proceed now by defining the algorithm for
the operator

⊕

.
The input of the

⊕

operator is the node a for which
we want to compute the PPR ranking and the set of the

stationary distributions3 π̄i =
−−→
PPR(Ĝi, 2α − α2, a) on the

graphs Ĝi obtained by applying the operator
⊙

to the graph
Gi = G[A ∪ C′

i], for each C′
i ∈ D = {C′

1, . . . , C
′
c}. The

algorithm has access to the precomputed F·(·, ·) and U·(·)

values and to the adjacency lists of the reduced graphs Ĝi

for C′
i ∈ D.

Each iteration of the operator
⊕

proceeds as follows:

2After applying at end of each step some simple matrix op-
erations to avoid the algorithm to be trapped in fixed point.
3We assume that a has at least an edge in each C′

i cate-
gory aggregated, otherwise such distributions would be triv-
ial with all probability in a.

• Compute the c× c transition matrix T :

Tij =(2α− α2)
Ua(C

′
j)

∑

C′

k
∈D Ua(C′

k)
+

(1− α)2
∑

x∈A

π̄i(x)
Fx(C

′
i, C

′
j)

∑

C′

k
∈D Fx(C′

i, C
′
k)

.

• Compute the stationary distribution t = (t1, . . . , tc) of
the matrix T .

• For each C′
j ∈ D compute,

φj =

c
∑

i=1

ti
∑

x∈A

π̄i(x)U
−1
x (C′

j)
Ĝj(x)

Ĝj(x)e
, (1)

π̂j = (2α− α2)1a + (1− α)2
φj

φje
, (2)

where 1a is a vector with all zeros except a 1 in position
a (the size is assumed by the context), Ĝj(x) is the
vector representing the row of node x in the adjacency
matrix of the reduced graph Ĝj and e is a vector with
all 1s.

At the end of each iteration, π̂i is fed to the algorithm
as the next π̄i vector, and the process is repeated until a
convergence criteria is met or the maximum number of steps
is reached. Finally, in the last step of the algorithm, instead
of computing Equations 1 and 2, we use the last π̄i vectors to
compute the approximation π̂ of the stationary distribution
we are interested in,

φ =

c
∑

i=1

ti
∑

x∈A

π̄i(x)

(

c
∑

j=1

Ux(C
′
j)

)−1 c
∑

j=1

Ux(C
′
j)

Ĝj(x)

Ĝj(x)e
,

π̂ = α1a +
(1− α)2

2− α
φ.

The following theorem, whose proof is omitted from this
paper, shows an important property of the

⊕

algorithm.

Theorem 1. Under the assumptions of Koury et al. algo-
rithm [20], for t → ∞ number of steps of the PPR operator
⊕

, the value π̂ converges to the distribution on nodes in A

in the graph G′ = G[A∪C′
1 ∪ . . .∪C′

c] i.e.
−−→
PPR(G′, α, a)[A].

The complexity of each step of the algorithm is approxi-
mately given by the total length of the rankings aggregated
in input, times the average degree of the nodes in the re-
duced graphs plus the time to compute (or approximate)
the stationary distribution on a small c× c matrix.

Sketch of the proof.
The rest of the section is devoted to provide a sketch of

the rather lengthy proof of the theorem.
As already said our main issue is the fact that the sub-

graphs we want to aggregate are not disjoint as they all
contain the nodes in A.

Similarly to the result in Lemma 1, we can show however
that the process can be also reduced efficiently to a graph
with only nodes in B whose weights depend on the 2-step or-
dinary random walk transition probabilities between nodes
in B. In this case the reduction operation is slightly com-
plicated by the fact that the restart probability is on a node
that is actually not present in the subgraph we restrict to.

354

Graph |A| |B| |E| |EA|
DBLP 881,759 1,295,405 3,773,586 6,277,745
Patent 1,496,067 2,139,313 4,301,229 4,220,151

Q-A-Cost > 1 × 106 > 100 × 106 > 150 × 106 < 50 × 106

Q-A-Impr. > 1 × 106 > 1.5 × 109 > 5 × 109 < 1.5 × 109

Table 1: Properties of the graphs analysed. Column
|EA| refers to the number of edges in the reduced
graph with only A nodes. The exact figures for the
proprietary Query-Ads graphs are not given.

Lemma 2. Consider the graph ĜB = (B,EB), with weights

given by ∀x, y ∈ B, wB(x, y) =
∑

z∈|N(x)∩N(y)|
w(x,z)w(z,y)∑
u∈N(z)w(z,u)

,

then

−−→
PPR(G,α, a)[B] =

1− α

2− α

∑

b∈N(a)

p(a, b)
−−→
PPR(ĜB , 2α−α2, b),

where
−−→
PPR(G,α, a)[B] is the subvector of

−−→
PPR(G,α, a) con-

taining only the PPR stationary on nodes in B and p(a, b)
is the ordinary random walk transition probability between
a and b in the bipartite graph G.

The proof of this lemma, which is omitted, depends again
on the method of stochastic complementation for Markov
chains, surveyed by Mayer in [26].

From the previous Lemma we know that we can define
a Markov chain containing only nodes in B and where the
categories of nodes we want to aggregate are disjoint sets,
so we can apply the algorithm of Koury et al. This would
constitute a correct solution of our problem; let us call this
algorithm “Naive

⊕

”.
The use of Naive

⊕

poses two new challenges. First, we
reduced our Markov chain to the larger side of the graph,
which is very inefficient. Second, the reduced graph on nodes
B for graph G[A∪C′

1∪ . . .∪C′
c] depends on the actual cate-

gories aggregated and it cannot be neither computed in the
real-time operator

⊕

nor we can pre-compute each possible
reduced graphs for each subset of C. For this reason, we
would like to be able to compose, on-the-fly, the informa-
tion obtained in the individual category’s reduced graphs,
possibly considering only information related to nodes in A.

It turned out that both objectives can be actually achieved
by using an important property of PPR on bipartite graphs:
that the stationary distribution on either side of the graph
uniquely determines the one on the other. More precisely,
the following lemma holds.

Lemma 3. Consider any weighted bipartite graph G(A ∪
B,E). Let πA and πB be the stationary distributions of PPR

on the two sides of the graph, i.e. πA =
−−→
PPR(G,α, a)[A],

πB =
−−→
PPR(G, α, a)[B]. Then

πA = α1a + (1− α)πBW̄ , πB = (1− α)πAW ,

where W is the |A| × |B| transition matrix of the ordinary
random walk from states in A to states in B and conversely,
W̄ is the opposite transition matrix (from states in B to
states in A).

First, it is possible to notice that by using Lemma 3 we
can easily compute, for instance with a single MapReduce
step, the distribution on the B side from the information on
the reduced graph. In our motivating example, that means
that we can also define similarity (or better relatedness) of

items for a given user. Second, by tackling the bijective re-
lationship between the stationary distributions on A and B,
we can redefine Naive

⊕

to operate only on the distributions
on the A side.

Using this intuition, by some algebraic manipulation it is
possible to show that the graph Ĝ obtained by operator

⊙

on G[A∪C′
1∪ . . .∪C′

c], and containing only nodes A, can be

reconstructed from the individual graphs Ĝi reduced from
G[A ∪ C′

i], which means that the information precomputed
are sufficient to define our operator

⊕

.

4. EXPERIMENTAL RESULTS
Section 4.1 describes our datasets; Section 4.2 reports the

effect of the reduce procedure on the graphs analyzed; Sec-
tion 4.3 presents our results on the accuracy of our method
with respect to ground truth data; Section 4.5 gives an em-
pirical evaluation of the approximation error of our PPR
aggregation algorithm.

4.1 Datasets
Our analysis concerned several private and public large-

scale dataset as reported in Table 1.

Query-Ads. Our largest datasets, Query-Ads (Cost) and
Query-Ads (Impression), which we denote as Q-A, are two
proprietary graphs obtained by data collected from Google
anonymized query logs where the identity of the advertisers
is anonymized and the queries have been hashed and can
only be identified by their hash id. Nodes in these weighted
bipartite graphs represent advertisers (A set) and queries
(B set) in the Google AdWords [2] system. The advertisers
are connected to the queries on which their ads have been
shown. We consider two variants of this dataset: one where
edge weights measure the cost paid by the advertiser, and
the other where edge weights count the number of times the
advertiser appears (has an impression). Nodes in the B side
are partitioned in 24 disjoint categories each representing a
different market segment.

DBLP. The DBLP graph is a publicly available [1] snap-
shot of a publication graph in computer science. Nodes in
this (unweighted) bipartite graph are authors (A set) and
publications (B set), and each author is connected to her
publications. Publication nodes belong to 6162 different
venues that can be partitioned in categories according to
their field. In our experiments, for simplicity, we consider
three categories for this graph: (1) top tier web-related and
data mining conferences (WWW, KDD and WSDM); (2)
top theoretical computer science conferences (STOC, FOCS,
SODA and ICALP); (3) the rest of the papers. To get a
glimpse of results produced by our approach, which we eval-
uate thoroughly in Section 4.3, we show in Table 2 the first
few positions induced by PPR for a well-known author in
this dataset. The table shows both the authors with the
highest similarity for the reference author in the theory and
data mining community and the ranking obtained by the
aggregation of both.

Patent. The Patent graph is obtained by a public dataset [14]
containing about 2 million U.S. patents granted between
January 1963 and December 1999 and their relative citations
received between 1975 and 1999. In this bipartite graph,
nodes representing the inventors (A set) are connected with
unweighted edges to the patents (B set) in which they are
listed as authors. The patents are classified by the U.S.

355

Theory WWW-like Both
1 E. Tardos L. Backstrom E. Tardos
2 D. Kempe J. Leskovec L. Backstrom
3 A. Kumar D. P. Huttenlocher J. Leskovec
4 P. Raghavan R. Kumar D. P. Huttenlocher
5 M. Sandler J. Ugander D. Kempe

Table 2: Example PPR rankings for the prolific au-
thor Jon Kleinberg in the two categories evaluated.

Patent Office in 36 disjoint categories each describing the
field of the invention (for instance “Computer Hardware &
Software”, “Biotechnology”, etc).

4.2 Graph Reduction
As discussed in the introduction, one of our objectives

is to design algorithms that can be applied efficiently to
bipartite graphs with a significant imbalance in the sizes of
their two sides. While the actual definition of the reduce
operation

⊙

changes from measure to measure, they share
a commonality: they all define edges between pairs of A
nodes that have a common B neighbor. Thus the number
of edges in the reduced graph is always the same, while the
weights may be different. Table 1 shows statistics on the
effect of the reduction procedure in our dataset. Notice that
we always observe a significant reduction in the number of
nodes: this ranges from a factor ∼ 2.5 in DBLP and Patent,
up to a factor of > 90 and> 750 in our largest graphs Query-
Ads (Cost) and Query-Ads (Impression), respectively. This
reduction plays a fundamental role in enabling the scalability
of ranking computations to the large scale graphs in our
Query-Ads datasets. Notice how the number of edges is also
significantly reduced in our Query-Ads dataset (to < 1/3
of the original size) while left substantially unaltered in the
Patent dataset. The DBLP dataset shows instead a relative
increase in the number of edges, probably because the input
graph is extremely sparse.

4.3 Ranking evaluation
In this section we evaluate the ability of the various meth-

ods analyzed to provide meaningful rankings in our datasets.
As the semantics of the relationships represented in the
graphs varies across our datasets, this evaluation is neces-
sarily data-dependent.

Our general approach works as follows: for each of our
datasets we derive ground truth clusters of nodes identified
to be relevant for a given node; then we measure the ability
of the methods to find the the nodes in the ground truth
cluster associated to that node (and hopefully rank them
high as well). To do so we employ two well-known metrics
in the field of information retrieval: precision and recall. For
a given ranking, the precision at position x of the ranking
is defined as the fraction of nodes in the top x positions
that are in the ground truth set. Conversely, the recall at
position x measures the ratio between the number of nodes
in the ground truth set among the top x positions and the
size of the ground truth set itself. The precision and recall
values at different positions of the ranking induce a precision
vs recall curve, which can be used to compare the accuracy
of different ranking methods. We proceed by describing the
source of ground truth information used in our analysis for
each of our datasets.

Query-Ads. For the Query-Ads graphs we employed ground
truth information gathered by the Google AdWords team.

This proprietary dataset contains, for each advertiser in a
sample of ∼ 1000 advertisers, a set of most similar advertis-
ers.

DBLP. In the case of DBLP graph, as a proxy for the sim-
ilarity between authors, we use a well-known and simple
natural language processing technique, the n-gram similar-
ity [16]. More precisely, for each author, after removing
stopwords from the titles of her papers, we induce the set
of bi-grams (i.e. sequence of 2 consecutive words) of all her
titles. For a given parameter k we use as ground truth the
top k authors in DBLP in terms of matching bi-grams (ties
broken randomly). To make our analysis more significant we
consider only authors with at least 5 papers in the bipartite
graph used in this experiment.

Patent. For the patent graph we use as the source of ground
truth the co-citations [38] among patents4. More precisely,
for two inventors a and b, we define s(a, b) as the number of
patents citing both a patent filed by inventor a and a patent
filed by inventor b. Similarly to the DBLP graph, the ground
truth set of inventor a is defined by the top k inventors in
decreasing order of s(a, b) (ties broken randomly). In this
case as well we restrict to inventors with at least 5 patents.

While we acknowledge that both the bi-gram and the co-
citation measures have a positive bias towards direct co-
authors (co-inventors) of a given node, we stress that neither
the citations nor the titles play any role in the definition of
the bipartite graph given in input to the algorithms.

Rankings in weighted graphs.
Contrary to the other datasets, the Query-Ads graphs are

weighted. Note that while the PPR random walk method
has a natural definition for weighted graphs, such a general-
ization is not so obvious for the other measures (for instance
the Adamic-Adar or Jaccard coefficient). Given the impor-
tance played by weights in this dataset we consider in our
analysis both the weighted version of PPR and a simple gen-
eralization of the intersection measure.

For each node a ∈ A, we define as the weighted intersec-
tion of node a with node b the following similarity measure
sa(b) =

∑

x∈N(a)∪N(b) w(b, x).

In other words, the similarity sa(b) for given pair a, b ∈ A
of nodes is given by the sum of the weights of the edges
connecting node b to the common neighbors with a in the
bipartite graph. Notice that this similarity degenerates to
intersection if all edges have unit weight. The A-node rank-
ing of node a is obtained by sorting in decreasing order of
sa(·) the nodes in the A side.

4.4 Results
Figure 2 shows the average Precision vs Recall curves on

a sample of nodes. Results for Query-Ads are averaged over
the ∼ 1000 nodes for which ground truth information is
available. For DBLP and Patent we set the parameter k to
20 and average over a random sample of 1000 nodes with a
least k nodes in the ground truth cluster.

In all our datasets, both the weighted and unweighted
version of PPR and the Katz similarity provide a good level
of performance, thus justifying their increased complexity.
Intersection and Adamic-Adar rank immediately after and
show very similar results, while the Jaccard coefficient un-

4Citation data appears to be less noisy than title bi-grams
but it is unavailable in our DBLP dataset.

356

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

P
re

c
is

io
n

Recall

Precision vs Recall

Inter
Jaccard

Adamic-Adar
Katz
PPR

(a) DBLP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

Recall

Precision vs Recall

Inter
Jaccard

Adamic-Adar
Katz
PPR

(b) Patent

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

P
re

c
is

io
n

Recall

Precision vs Recall

Weighted PPR (Cost)
Weighted Inter. (Cost)
Weighted PPR (Impr.)
Weighted Inter. (Impr.)

(c) Query-Ads

Figure 2: Precision vs Recall curves at various po-
sitions of the rankings. We use k = 20 nodes in the
ground truth clusters. PPR and Katz outperforms
the other algorithms in every dataset. Results are
averaged over ∼ 1000 nodes for each graph.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

P
re

c
is

io
n

Recall

Precision vs Recall

Katz L=4
Katz L=6

Figure 3: Precision vs Recall in DBLP for the Katz
measure depending on the maximum length L con-
sidered. No significant improvement is shown when
using longer paths. Similar results are observed for
Patent. We averaged over 100 nodes using k = 20.

derperforms all the other measures, in particular for the
DBLP dataset. We notice that the overall recall achieved
is lower in our DBLP dataset, probably due to the noisy
ground-truth used (title bi-gram similarity).

Note that the computation of the exact PPR is infeasible
for the scale of our dataset, as it requires a matrix inversion
of size |A| × |A|. Consequently, we compute the PPR dis-
tribution using the approximation method of Andersen et
al. [5], setting α = 0.15 and the approximation parameter
to ǫ = 0.0001, unless otherwise specified. Similarly, in the
computation of the Katz ranking we consider only paths of
length up to 4 and we use β = 0.05. Figure 3 shows no sig-
nificant improvement in precision using longer paths, while
the computation becomes very expensive for paths of length
8 or more.

4.5 PPR aggregation algorithm
In this section we evaluate experimentally the precision

with which PPR is approximated in the iterative aggregation
algorithm introduced in Section 3.5.

For each of our datasets, we performed the following ex-
periment: we execute the reduce algorithm on the entire
bipartite graph. Then we apply our iterative aggregation
algorithm, for a sample of 1000 nodes in A and a certain
number of steps, to aggregate the PPR ranking of two cat-
egories. Then, to evaluate the correctness of PPR, we com-
pare the results with PPR computed on the subgraph with
the categories aggregated. Both for the ground truth ranking
and for the individual category ranking, we use the previ-
ously mentioned approximation algorithm with ǫ = 0.0001.

To evaluate the precision of our approximation we employ
several well-known similarity measures: the Kendall’s tau
correlation index [19], the cosine similarity and the Pearson
correlation coefficient; which we now recall.

The Kendall’s tau correlation index is a well-known rank-
ing agreement measure. The index ranges between −1 to +1
and measures the prevalence of pairs of elements that have
the same order in both rankings. An index of +1 shows
perfect concordance (i.e. the rankings are equal), while −1
indicates instead a total disagreement (i.e. one ranking is
the opposite of the other). A value close to 0 characterizes
rankings that are a random permutation of each other.

More precisely, we employ the following definition of the
Kendall’s tau index [19] which accounts for the presence of
ties, arising for instance for nodes with zero PPR:

τ =
C −D

√

(C +D + F)(C +D + S)
,

where C andD are the number of concordant and discordant
pairs, respectively; F and S are the number of ties only
in first and only in the second ranking respectively. Ties
occurring in both rankings are disregarded.

The Kendall’s tau assesses the agreement over the entire
range of positions. To measure the precision of the rank-
ings for the first few positions (the ones most likely to be
seen in many applications), we compute as well the index
τ restricted to the first k positions of the ranking. This is
obtained by considering only pairs of elements in the top k
positions of the ground truth ranking.

Figure 4 shows the results for Kendall’s tau index after
running one iteration of our algorithm, for both the entire
ranking and the first positions. The results show a very
strong positive agreement between the correct ranking and

357

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 All

K
e
n
d
a
ll’

s
 t
a
u

Position (k)

Kendall’s tau Correlation

DBLP
Patent

Query-Ads (cost)

Figure 4: Average Kendall’s tau correlation between
the ground truth PPR ranking and our approxima-
tion after one iteration of the aggregation algorithm.

 1e-06

 1e-05

 0.0001

 0.001

 0 2 4 6 8 10 12 14 16 18 20

1
-C

o
s
in

e

Iterations

Approximation Error vs # Iterations

DBLP (1 - Cosine)
Patent (1 - Cosine)

Figure 5: Variation of the approximation error de-
pending on the number of iterations executed. Lines
for the Pearson coefficient are practically coincident.

our approximation in all the graphs, with higher values in
our DBLP and Patent datasets. As expected, the agreement
is stronger in the top positions which are less subject to
additive approximation errors due to their larger PPR score.

The Kendall’s tau correlation measures the similarity of
the order in the two rankings, but it does not assess the
accuracy in approximating the probability values. For this
reason, we further evaluate the accuracy of our PPR ap-
proximation by applying two vector similarity measures on
the distributions. Let a and b be two vectors of n elements.
We define the following well-known similarity measures: the
cosine similarity and Pearson correlation coefficient.

The cosine similarity is defined as follows:

Cosine(a, b) =

√
∑n

i=1 (aibi)
√
∑n

i=1 a
2
i

√
∑n

i=1 b
2
i

.

Cosine similarity measures the angles between the two vec-
tors and it ranges, in non-negative vectors, from 0 (orthog-
onal vectors) to 1 (same direction).

Similarly, the Pearson correlation coefficient between a
and b is defined as

Pearson(a, b) =

√

∑n

i=1

(

(ai − ā)
(

bi − b̄
))

√

∑n

i=1 (ai − ā)2
√

∑n

i=1

(

bi − b̄
)2

,

where ā and b̄ indicates the average value in a and b, respec-
tively. This measure assesses the linear dependency of the
two vectors and it ranges from −1 to +1 where 1 shows a
perfect positive correlation, 0 shows no correlation and −1
indicates a perfectly negative correlation.

Using the previous definitions we can now compare the
ground truth PPR distribution with the one obtained by our

Graph Cosine Sim. Pearson Coeff.

DBLP 0.9996 (±4.7× 10−5) 0.9996 (±4.8 × 10−5)

Patent 0.9995 (±7.2× 10−5) 0.9993 (±1.2 × 10−4)

Q-A-Cost 0.9716 (±3.3× 10−3) 0.9698 (±3.5 × 10−3)

Table 3: Similarity between the ground truth PPR
ranking and our approximation after one iteration of
the aggregation algorithm. Results between paren-
theses are the 95% confidence intervals, obtained by
the t-student distribution [37].

iterative method. Table 3 shows the accuracy of the rank-
ings obtained after a single step of the iterative algorithm
in our datasets. In all our datasets the results confirm the
conclusion suggested by the Kendall’s tau measure: we ob-
serve a very high accuracy after a single iteration, showed
by Cosine similarity and Pearson correlation coefficient very
close to 1. The approximation error is again particularly
small in our smaller datasets: DBLP, Patent.

Finally, Figure 5 shows the evolution of the approxima-
tion error as the number of iterations increases. In this ex-
periment, we determine the ground truth PPR distribution
using a very small ǫ value (ǫ = 1× 10−6) on our smaller
DBLP and Patent dataset. The initial category rankings
used in the aggregation are still however computed using
ǫ = 1× 10−4 as in the other experiments. Notice that the
approximation error decreases steeply in the first steps and
then reaches a plateau consistent with the approximation
error of the ground truth PPR after about 8-10 iterations.

5. CONCLUSIONS
Bipartite graphs representing the relationships between

actors and items in online services can be mined to extract
many useful insights.

In this work we studied the problem of efficiently comput-
ing similarity rankings in massive bipartite graphs where
the items can be partitioned in arbitrary subsets. We intro-
duced a novel algorithmic framework that enables the real-
time computation of several widely-used similarity measures
in large-scale graphs. These algorithms, crucially, tackle the
lopsided nature of such graphs to execute the computation
on the small side of the network (which can reduce the num-
ber of nodes by a factor of >750 in our experiments).

We provide both a thorough experimental evaluation of
the accuracy of our framework for large-scale publicly avail-
able and proprietary datasets, and a formal proof of the
correctness of the algorithms.

We believe that our approach can be extended to include
several other similarity measures developed in the literature,
for example the HITS [18] algorithm. It would also be inter-
esting to extend the framework to more nuanced approaches
that integrate additional non-topological information about
the entities in the graph (e.g., [11]). Another important and
challenging open problem consists in generalizing our ap-
proach to the practically relevant case where the categories
are not disjoint.

Acknowledgements

We thank Benedict Hsieh, Hugh Lynch, Varun Sharma, James
Walker and Xiaowei Zhang for helping with the data analy-
sis, implementation and useful discussions.

358

6. REFERENCES

[1] DBLP dataset (accessed on 12 Sept 2013).
http://dblp.uni-trier.de/xml/.

[2] Google AdWords. www.google.com/adwords.

[3] L. A. Adamic and E. Adar. Friends and neighbors on
the web. Social networks, 2003.

[4] A. Anagnostopoulos, A. Dasgupta, and R. Kumar.
Approximation algorithms for co-clustering. In PODS,
2008.

[5] R. Andersen, F. Chung, and K. Lang. Using
PageRank to locally partition a graph. Internet
Mathematics, 2007.

[6] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent
permutations. In STOC, 1998.

[7] A. Z. Broder, R. Lempel, F. Maghoul, and
J. Pedersen. Efficient PageRank approximation via
graph aggregation. Information Retrieval, 2006.

[8] J. Carrasco, D. Fain, K. Lang, and L. Zhukov.
Clustering of bipartite advertiser-keyword graph. In
ICDM, 2003.

[9] S. Chien, C. Dwork, R. Kumar, D. R. Simon, and
D. Sivakumar. Link evolution: Analysis and
algorithms. Internet Mathematics, 2004.

[10] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Communications of
the ACM, 2008.

[11] H. Deng, M. R. Lyu, and I. King. A generalized
Co-HITS algorithm and its application to bipartite
graphs. In KDD, 2009.

[12] Dhillon and S. Inderjit. Co-clustering documents and
words using bipartite spectral graph partitioning. In
KDD, 2001.

[13] D. Greene and P. Cunningham. Spectral co-clustering
for dynamic bipartite graphs. In DyNaK: Dynamic
Networks and Knowledge Discovery, 2010.

[14] B. H. Hall, A. B. Jaffe, and M. Trajtenberg. The
NBER patent citation data file: Lessons, insights and
methodological tools. Technical report, National
Bureau of Economic Research, 2001.

[15] T. H. Haveliwala. Topic-sensitive PageRank. In
WWW, 2002.

[16] D. Jurafsky and J. H. Martin. Speech and Language
Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech
Recognition. Prentice Hall PTR, first edition, 2000.

[17] L. Katz. A new status index derived from sociometric
analysis. Psychometrika, 1953.

[18] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. Journal of the ACM
(JACM), 1999.

[19] W. R. Knight. A computer method for calculating
Kendall’s tau with ungrouped data. Journal of the
American Statistical Association, 1966.

[20] J. Koury, D. McAllister, and W. J. Stewart. Iterative
methods for computing stationary distributions of
nearly completely decomposable Markov chains. SIAM
Journal on Algebraic Discrete Methods, 1984.

[21] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Trawling the Web for emerging
cyber-communities. Computer networks, 1999.

[22] A. N. Langville and C. D. Meyer. Updating Markov
chains with an eye on Google’s PageRank. SIAM
Journal on Matrix Analysis and Applications, 2006.

[23] D. Liben-Nowell and J. Kleinberg. The link-prediction
problem for social networks. Journal of the American
society for information science and technology, 2007.

[24] S. C. Madeira and A. L. Oliveira. Biclustering
algorithms for biological data analysis: a survey.
IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 2004.

[25] Q. Mei, D. Zhou, and K. Church. Query suggestion
using hitting time. In CIKM, 2008.

[26] C. D. Meyer. Stochastic complementation, uncoupling
Markov chains, and the theory of nearly reducible
systems. SIAM review, 1989.

[27] A. Mirzal and M. Furukawa. Eigenvectors for
clustering: Unipartite, Bipartite, and Directed Graph
Cases. In ICEIE, 2010.

[28] M. K.-P. Ng, X. Li, and Y. Ye. MultiRank: co-ranking
for objects and relations in multi-relational data. In
KDD, 2011.

[29] J. X. Parreira, C. Castillo, D. Donato, S. Michel, and
G. Weikum. The juxtaposed approximate PageRank
method for robust PageRank approximation in a
Peer-to-Peer web search network. The VLDB Journal,
2008.

[30] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In WWW, 2001.

[31] C. Silverstein, H. Marais, M. Henzinger, and
M. Moricz. Analysis of a very large web search engine
query log. SIGIR Forum, 1999.

[32] K. Sim, J. Li, V. Gopalkrishnan, and G. Liu. Mining
maximal quasi-bicliques to co-cluster stocks and
financial ratios for value investment. In ICDM, 2006.

[33] H. A. Simon and A. Ando. Aggregation of variables in
dynamic systems. Econometrica: Journal of The
Econometric Society, 1961.

[34] J. Srivastava, R. Cooley, M. Deshpande, and P.-N.
Tan. Web usage mining: Discovery and applications of
usage patterns from web data. ACM SIGKDD
Explorations Newsletter, 2000.

[35] W. J. Stewart. Introduction to the numerical solution
of Markov chains. Princeton University Press, 1994.

[36] A. Vattani, D. Chakrabarti, and M. Gurevich.
Preserving personalized PageRank in subgraphs. In
ICML, 2011.

[37] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye.
Probability and statistics for engineers and scientists.
Prentice Hall., 1993.

[38] H. D. White and K. W. McCain. Bibliometrics.
Annual review of information science and technology,
1989.

[39] W. Wu, H. Li, and J. Xu. Learning query and
document similarities from click-through bipartite
graph with metadata. In WSDM, 2013.

[40] Y. Wu and L. Raschid. ApproxRank: Estimating rank
for a subgraph. In ICDE, 2009.

[41] D. Zhou, S. A. Orshanskiy, H. Zha, and C. L. Giles.
Co-ranking authors and documents in a heterogeneous
network. In ICDM, 2007.

359

