
Bicriteria Distributed Submodular Maximization in a Few
Rounds

Alessandro Epasto

Google, New York, NY, USA

aepasto@google.com

Vahab Mirrokni

Google, New York, NY, USA

mirrokni@google.com

Morteza Zadimoghaddam

Google, New York, NY, USA

zadim@google.com

ABSTRACT

We study the problem of efficiently optimizing submodular func-

tions under cardinality constraints in distributed setting. Recently,

several distributed algorithms for this problem have been intro-

duced which either achieve a sub-optimal solution or they run

in super-constant number of rounds of computation. Unlike pre-

vious work, we aim to design distributed algorithms in multiple

rounds with almost optimal approximation guarantees at the cost

of outputting a larger number of elements. Toward this goal, we

present a distributed algorithm that, for any ϵ > 0 and any con-

stant r , outputs a set S ofO (rk/ϵ
1

r) items in r rounds, and achieves
a (1 − ϵ)-approximation of the value of the optimum set with k
items. This is the first distributed algorithm that achieves an ap-

proximation factor of (1 − ϵ) running in less than log
1

ϵ number of

rounds. We also prove a hardness result showing that the output

of any 1 − ϵ approximation distributed algorithm limited to one

distributed round should have at least Ω(k/ϵ) items. In light of this

hardness result, our distributed algorithm in one round, r = 1, is

asymptotically tight in terms of the output size. We support the

theoretical guarantees with an extensive empirical study of our

algorithm showing that achieving almost optimum solutions is

indeed possible in a few rounds for large-scale real datasets.

1 INTRODUCTION

As a prominent problem in machine learning and data mining appli-

cations, submodular maximization have attracted a great amount of

research in the past decade. A set function f : 2
N → R on a ground

set N is submodular if for any two sets A and B, f (A) + f (B) ≥
f (A ∩ B) + f (A ∪ B), or equivalently, it satisfies the following di-
minishing return property, for any two sets A ⊆ B and an element

x , f (A∪ {x })− f (A) ≥ f (B∪ {x })− f (B). Several machine learning

and data mining applications can be formalized as a submodular

maximization problem. In the majority of such applications, the

goal is to select a subset of representatives in a universe of elements

and optimize some objective function. Some of those machine learn-

ing applications include exemplar based clustering [13], coverage

problems [2], document summarization [20], and active set selec-

tion for non-parametric learning [15], and feature selection for

training complex models [20]. More recently, motivated by several

large-scale applications, various techniques have been developed

SPAA ’17, July 24-26, 2017, Washington DC, USA

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4593-4/17/07.

https://doi.org/10.1145/3087556.3087574

for solving this problem in a distributed manner [5, 6, 21, 23]. These

distributed algorithms, however, either achieve a sub-optimal so-

lution for the submodular maximization problem, or they run in

super-constant
1
number of rounds of computation (which make

them less appealing in distributed frameworks like MapReduce). In

this paper, we aim to present distributed algorithms addressing the

above issues achieving asymptotically optimal approximation guar-

antees in a constant number of rounds of computation by allowing

to output more items.

More specifically, we focus on submodular maximization prob-

lem subject to a cardinality constraint: given a cardinality constraint

k , and a submodular function f defined on subsets of N (|N| = n),
the goal is to find a set S of at most k items with maximum value

f (S). Let OPT be the set of k items that achieves the maximum

value, i.e. OPT = argmaxS ⊆N& |S | ≤k f (S). In the rest of the pa-

per, we focus on non-negative monotone submodular functions

since for non-monotone submodular functions it is impossible to

get better than 1/2-approximation factor using sub-exponential

number of evaluations of function f even without any cardinality

constraint [12]. For monotone submodular functions, it is computa-

tionally hard to approximate this problemwithin a factor better than

1−1/e ≈ 63% [11]. The best approximation guarantees for maximiz-

ing a general monotone submodular function in a scalable manner

in two rounds is a 54%-approximation proposed by [21]; they also

show that even if machines have unbounded computational power

achieving an approximation factor better than 1− 1/e is impossible

in distributed settings (an information-theoretic hardness result).

Other approximation algorithms developed for this problem achieve

1 − 1/e-approximation, but they run in super-constant number of

rounds of computation, e.g. logarithmic or 1/ϵ rounds to achieve
1 − 1/e − ϵ . In practice, however, it is desirable to achieve an al-

most optimum solution, i.e., (1 − ϵ)-approximation. While such an

approximation factor is not achievable even on a single machine

when limiting the output size to k elements, a naive approach of

getting (1 − ϵ)-approximation in a centralized way is to repeat-

edly run the greedy algorithm on the data, and outputO (k ln(1/ϵ))
elements. In order to achieve such an approximation factor in a dis-

tributed manner, a naive idea is to run distributed constant-factor

approximation algorithms for submodular maximization [5, 21, 23],

and get to (1 − ϵ)-approximation in O (ln(1/ϵ)) rounds. In the dis-

tributed setting, even if some (1 − ϵ)-approximation algorithms

are used by the distributed and central machines to select items,

the overall distributed approximation factor will not be more than

1/2 based on Theorem 5 of [5]. Therefore still log(1/ϵ) rounds are
needed to achieve a (1 − ϵ) approximation factor. We show these

naive greedy approaches in Table 1. The main issue with these

1
The number of rounds of other methods is some function of 1/ϵ which increases as

we aim for better approximation guarantees, i.e. smaller ϵ . For a constant ϵ , the other
methods also give constant (but possibly large) number of rounds.

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

25

https://doi.org/10.1145/3087556.3087574
rodkin
Typewritten Text
This work is licensed under a Creative Commons
Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Algorithm Rounds Size of output |S | Approximation

GreedyScaling [18] O (log(∆)/ϵ) k 1 − 1/e − ϵ

GreeDi [23] 1 k 1/min{m,k } ≥ 1/n1/3

PseudoGreedy [21] 1 k 0.54

RandGreedi [5] 1 k 0.316

ParallelAlg [6] O (1/ϵ) k 1 − 1/e − ϵ

Naive Distributed Greedy O (log(1/ϵ)) k log(1/ϵ) 1 − ϵ

BicriteriaGreedy*, r O (rk ln2 (1/ϵ1/r)/ϵ2/r) 1 − ϵ

BicriteriaGreedy with multiplicity* r O (rk ln(1/ϵ1/r)/ϵ1/r) 1 − ϵ

HybridAlg* r O (rk/ϵ1/r) 1 − ϵ

Table 1: Summary of our results and the state of the art. Thenumber of rounds shows the number of times the central algorithm

interacts with the distributed machines. The results with * are the new results of this paper. The main advantage of our

methods are achieving almost optimal solutions for any number of rounds r > 0.

approaches is the number of rounds which is a major bottleneck

in making these algorithms scalable. This leaves open the problem

of defining greedy-based algorithms in distributed settings with

limited number of rounds. We propose the distributed Algorithm

BicriteriaGreedy with pseudo-code as Algorithm 1 that outputs

a set S of more than k items, and achieves the 1 − ϵ times the value

of the optimum set for a given ϵ > 0. The number of selected items,

|S |, depends on k and ϵ as expected, and the dependence on ϵ can

be reduced exponentially by increasing the number of rounds. So

one can choose a small number of rounds (two or three), and still

have a good guarantee on the number of selected items without

sacrificing the scalability of the algorithm. We also prove that the

polynomial dependence of the output size on 1/ϵ is necessary by

providing a hardness result that also shows our results are asymp-

totically tight when the algorithm has to perform in one distributed

round
2
. In addition to the mathematical analysis of our algorithm,

we support the theoretical guarantees with an extensive empirical

study of our algorithm, and show that achieving almost optimum

solutions are indeed possible in a few rounds. We highlight that

our main contribution is not to introduce a new algorithmic tech-

nique for submodular maximization (we build on the well-known

greedy algorithm). We explore theoretically and experimentally the

trade-offs between outputting more items and number of rounds

when we aim for a 1 − ϵ approximation guarantee.

Our Contributions. We provide the first distributed algorithm

that achieves an approximation factor of (1−ϵ) running in less than
log

1

ϵ number of rounds. We use the same distributed framework

of [21, 23]. A central machine partitions the ground set randomly

among a set of distributed machines (workers). Each machine runs

the greedy algorithm to select a subset of its items, and return them

to the central machine. Among all returned items, a final output

set will be selected. We generalize the proof techniques of [21] and

present algorithm BicriteriaGreedy that outputs a solution with

value arbitrarily close to optimum. In particular for any α > 1, we

show that an approximation factor of 1 − 1/α is achieved if each

distributed machine greedily returns O (αk) items to the central

machine, and then Õ (α2k) of these returned items are greedily

2
Having only one distributed round is an important case specially in time-sensitive

applications in which the algorithm should process the data very fast and provide a

solution instantly.

selected as the final solution. We note that [21] provides a 0.54-

approximation factor by outputting k items, and here we analyse

the effect of growing the output size beyond k on the approximation

factor and how fast we converge to an almost optimum solution.

Using the simple trick of sending each item to α ln(α) random ma-

chines instead of a random partitioning of ground set, we can show

that outputting Õ (αk) items as the final solution suffices to achieve

an approximation factor of 1 − 1/α . We call this α ln(α) term the

multiplicity factor as it is the number of machines we send each

item to. By selecting a larger α , one can achieve better approxima-

tion guarantees while outputting more items. We further improve

our results by presenting algorithm HybridAlg that outputsO (αk)
items while having the 1 − 1/α approximation (this gets rid of the

extra log factor in the size upper bound).

So far, we have described our methods using one distributed

round of computation. A major contribution of our work is to get

the same approximation factors with outputting much fewer items

when more number of rounds is allowed. We start with S = ∅,
and we want to reduce the gap f (OPT) − f (S) to at most ϵ f (OPT)
(equivalent of getting a 1 − ϵ approximation). At the beginning

this gap is equal to f (OPT), and therefore in r rounds we want to
reduce it by a total multiplicative factor of ϵ . This can be achieved

by reducing the gap by a factor of ϵ1/r in each round. Our proof

techniques are of independent interest as they resemble some of the

ideas of the egg dropping puzzle [14]. By setting α = O (1/ϵ1/r), we

can get a 1− ϵ1/r approximation in each round which is equivalent

of reducing the gap by ϵ1/r . Therefore after r rounds, we have a
(1 − ϵ) approximation factor using O (rαk) items in HybridAlg,

Õ (rαk) items in BicriteriaGreedy with multiplicity α ln(α), and
Õ (rα2k) items in BicriteriaGreedy with just a random partition-

ing (multiplicity one).

Furthermore, we show that for a distributed algorithm that

achieves a 1 − ϵ approximation guarantee in one distributed round,

the algorithm needs to have an output size of at least Ω(k/ϵ). This
hardness result proves the tightness of our algorithmic result for

r = 1, and also provides an insight on why the output size should

have a polynomial dependence on 1/ϵ in distributed setting versus

the logarithmic dependence in centralized single machine setting.

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

26

1.1 Related Work.

Submodular maximization in a distributed manner have attracted

a significant amount of research over the last few years [4–6, 8–

10, 18, 19, 21, 23]. From a theoretical point of view, for the coverage

maximization problem, [9] present a (1 − 1/e)-approximation al-

gorithm in polylogarithmic number of MapReduce rounds, and

[8] improved this result and achieved log
2 n number of rounds.

Recently, [18] present a (1 − 1/e)-approximation algorithm using

a logarithmic number of rounds of MapReduce. They also derive

(1/2 − ϵ)-approximation algorithm that runs in O (1δ) number of

rounds of MapReduce (for a constant δ), but this algorithm needs

a logn blowup in the communication complexity, and number of

rounds could become large for small δ . [6] present a distributed
1−1/e−ϵ approximation algorithm that runs inO (1/ϵ) rounds, and
their space requirement also grows linearly with 1/ϵ . As observed
in various empirical studies [17], the communication complexity

and the number of MapReduce rounds are important factors in

determining the performance of a MapReduce-based algorithm and

a logn blowup in the communication complexity can play a crucial

role in applicability of the algorithm in practice. Our algorithm on

the other hand runs only in a constant number of rounds. Recently,

distributed approximation algorithms have been developed for this

problem that run in two rounds [5, 21, 23], however, they do not

achieve optimal approximation factor of 1 − 1/e for this problem,

or they do not achieve a general result for all submodular func-

tions. [23] shows the effectiveness of applying algorithm Greedy
over a random partitioning empirically for several machine learn-

ing applications. The authors also prove theoretical guarantees

for algorithm Greedy for special classes of submodular functions

satisfying a certain Lipschitz condition [23].

2 ALGORITHM BICRITERIAGREEDY

We present Algorithm BicriteriaGreedy depicted as Algorithm 1

which uses the Greedy algorithm described as Algorithm 2 as a

subroutine and achieves approximation guarantee of 1 − ϵ . Algo-
rithm BicriteriaGreedy receives in the input the ground set N,
as the number of rounds r , approximation error ϵ , the number of

machinesm, and cardinality constraint k . The algorithm works for

any r > 0, and the upper bound on the number of selected items

improves as r grows. However one should be careful with setting

r to a large number as the number of rounds directly influences

the scalability of the algorithm. The algorithm also works for any

number of machinesm > 0 but for the sake of analysis we need

m ≥ α ln(α) for α = 3/ϵ1/r . Increasing m reduces the workload

on each of the distributedm machines, however it increases the

number of items the central machine should process
3
.

BicriteriaGreedy constructs output set S by startingwith S = ∅,
and adding items to S as follows. In each of the r rounds (lines 6−11),
it partitions the items randomly betweenm machines, giving setTi
to machine i . This random partitioning in each round might seem

an overhead, but since the running times of each machine is super-

linear in the number of items it receives, repartitioning does not

become a bottleneck both in terms of the asymptotic complexity,

3
Settingm =

√
n/k ′ makes sure that the number of items each distributed machine

processes, and the central machine processes are the same where k ′ is the number of

items each distributed machine returns in line 8 of the algorithm.

and also the running times of our experiments in Section 4. Every

machine i runs Algorithm 2 (Greedy) to select a subset Si ⊂ Ti .
In both Algorithms 1 and 2, we use notation ∆(x ,A) to denote the

marginal value of adding item x toA, i.e.∆(x ,A) = f ({x }∪A)− f (A).
The selected items (∪mi=1Si) are sent to a central machine which

does another filtering and selects a subsetA ⊆ ∪mi=1Si , and addsA to

set S . This extra filtering corresponds to lines 9− 11 in Algorithm 1.

Parameter ϵ determines how much suboptimal we are allowed to

be compared to the optimum solution.

The for loop in lines 7 − 8 of Algorithm 1 is parallelized, and

machine i runs the subroutine Greedy (αk ,S ,Ti) described as Al-

gorithm 2 for each 1 ≤ i ≤ m. In lines 9 − 11 of Algorithm 1, the

central machine gathers all selected items ∪mi=1Si , and in each of

the (α2 ln2 (α)+ ln(α))k iterations, chooses the item with maximum

marginal gain among the selected items to add to S . To summarize,

Algorithm 1 selects (α2 ln2 (α) + ln(α))k items in each round.

1 Input: N, r , ϵ ,m, and k .

2 Output: Set S ⊂ N with f (S) ≥ (1 − ϵ) f (OPT).

3 α ← 3/(ϵ1/r);

4 S ← ∅;

5 forall the 1 ≤ ℓ ≤ r do
6 Send each item in N independently into one of {Ti }

m
i=1

uniformly at random;

7 forall the 1 ≤ i ≤ m do

8 Si ← Greedy (αk ,S ,Ti);

9 forall the 1 ≤ j ≤ (α2 ln2 (α) + ln(α))k do

10 x∗ ←maxx ∈∪mi=1Si∆(x ,S);

11 S ← S ∪ {x∗};

12 Return S ;
Algorithm 1: Algorithm BicriteriaGreedy

1 Input: k ′, S , and Ti .

2 Output: Set Si ⊂ Ti with |Si | ≤ k ′.

3 Si ← ∅;

4 forall the 1 ≤ i ≤ k ′ do
5 x∗ ←maxx ∈Ti∆(x ,Si ∪ S);

6 Si ← Si ∪ {x
∗};

7 Return Si ;
Algorithm 2: Algorithm Greedy

2.1 Analysis

We start by proving that Algorithm BicriteriaGreedy returns a

solution with E[f (S)] ≥ (1 − ϵ) f (OPT) and |S | ≤ r (α2 ln2 (α) +
ln(α))k . In Subsection 2.2, we show that it is possible to reduce

the number of selected items (|S |) by some slight changes while

maintaining the 1− ϵ approximation guarantee. In Algorithm 1, we

iteratively run the for loop in lines 6 − 11 for r consecutive times.

We call each of these r executions a round. The high level proof

plan is to show that at each round f (S) is increased by at least

(1− ϵ1/r) (f (OPT) − f (S)). In other words, the gap f (OPT) − f (S)

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

27

is reduced by a multiplicative factor of ϵ1/r in each round, and

therefore after r rounds this gap is at most ϵ f (OPT) which implies

that f (S) ≥ (1 − ϵ) f (OPT). We will formalize and elaborate this

argument in the proofs. To avoid confusion, we define Aℓ to be the

set of selected items (set S) in the first ℓ rounds for any 0 ≤ ℓ ≤ r .
At the beginning set S is equal to A0 = ∅, and the final output is

Ar . We start by showing that at each round, we get at least 1− ϵ1/r

closer to OPT. We provide most of the proofs in the supplemental

material, and include a high level intuition.

Lemma 2.1. The expected value of E[f (Aℓ)] − f (Aℓ−1) (increase

in value of S at round ℓ) is at least (1− ϵ1/r) (f (OPT) − f (Aℓ−1)) for
any 1 ≤ ℓ ≤ r , and set Aℓ−1.

We first prove that Lemma 2.1 is sufficient to achieve the 1 − ϵ
approximation guarantee.

Theorem 2.2. Algorithm BicriteriaGreedy returns a set S with

expected value at least (1 − ϵ) f (OPT) and at most r (α2 ln2 (α) +
ln(α))k items where α is

3

ϵ 1/r .

Proof. Algorithm 1 has r rounds and in each round, (α2 ln2 (α)+
ln(α))k items are added to S . Therefore size of S can not be more

than r (α2 ln2 (α) + ln(α))k . To lower bound the value of final set

S = Ar , we define aℓ to be E[Aℓ]. Using Lemma 2.1, we know that

aℓ − aℓ−1 is at least (1 − ϵ1/r) (f (OPT) − aℓ−1). In other words,

f (OPT) − aℓ is at most ϵ1/r (f (OPT) − aℓ−1). By combining all

these lower bounds for different values of 1 ≤ ℓ ≤ r , we have

f (OPT)−ar ≤ (ϵ1/r)r (f (OPT)− f (A0)) = ϵ f (OPT), and therefore
E[f (S)] = E[f (Ar)] = ar ≥ (1 − ϵ) f (OPT). □

To complete the analysis, we provide the main ideas of the proof

of Lemma 2.1, and include the formal proof after that. We need to

borrow some notations from [21], and use some of the techniques

developed there for our analysis. Let OPT
S
be the part of OPT

that is selected by the machines, i.e. OPT
S = OPT ∩ (∪mi=1Si). Let

OPT
NS

be OPT \ OPTS .

We will also borrow the following notations which are going to

be used in the proof of Lemma 2.1. Therefore we can refer to set

Aℓ−1 which ismentioned in the statement of Lemma 2.1without any

confusion. For every machine i , we define a partition of optimum

set OPT into two sets OPT
S
i and OPT

NS
i . Set OPT

S
i consists of

optimum items that if they were sent to machine i , they would

be selected. Formally, OPT
S
i is defined as {x |x ∈ OPT AND x ∈

Greedy (k ′,Aℓ−1,Ti ∪ {x })} where Greedy (k
′,S ,T) is the output of

Algorithm Greedy (depicted as Algorithm 2) with inputs k ′,S , and
T . In other words, if we send an item x ∈ OPT along with set Ti
to machine i in round ℓ and machine i selects item x as part of

its output, we will put x in set OPT
S
i . Any other optimum item is

put in set OPT
NS
i = OPT \ OPTSi . Formally, OPT

NS
i is defined as

{x |x ∈ OPT AND x < Greedy (k ′,Aℓ−1,Ti ∪ {x })}. We also fix an

arbitrary permutation of items in OPT, and for every x ∈ OPT, we
define OPT

x
to be the items in OPT that appear before x in the

fixed permutation.

We focus on the claim of Lemma 2.1 for the first round and

a similar argument works for the rest. We show there exists a

small set B∗ of selected items {Si }
m
i=1 with value almost as large as

f (OPT). Define B∗ = OPT
S ∪ S1 ∪ S2 · · · SC whereC = α ln(α). By

submodularity of f , we have f (OPT) − f (B∗) ≤
∑
x ∈OPT ∆(x ,B

∗),
and we show that the marginal values ∆(x ,B∗) are all small in

expectation. Optimum items that are selected, OPT
S
, are already

in B∗ and therefore have zero marginal value to B∗. If some item x
would not be selected by some machine 1 ≤ i ≤ C if x were sent to

i , we can say that machine i would have preferred other αk items in

Si , and therefore ∆(x ,Si) is less than the average marginal values of

selected items f (Si)/(αk) which suffices to show ∆(x ,B∗) is small.

For any other optimum item x , we know all these C machines

would have picked x , if it was sent to any of them, but apparently

x was sent to some other machine that did not pick it. Similar to

Lemma 3.2 of [21], we can prove that this happens with only a small

probability of 1/α with our choice of C . We conclude that expected

marginal value ∆(x ,B∗) is small for every x ∈ OPT, and therefore

f (B∗) should be almost as large as f (OPT). To see the rest of the
proof, we note that all items of B∗ are available to be chosen by the

central machine in lines 9 − 11 of Algorithm 1. Using the classic

analysis of algorithm Greedy, choosing |B∗ | ln(1/ϵ) items at this

step suffices to have f (S) ≥ (1 − ϵ) f (B∗) which completes the

proof. We are ready to formalize all these main ideas as the proof

of Lemma 2.1.

Proof of Lemma 2.1We first define set function д(B) to be f (B ∪
Aℓ−1) − f (Aℓ−1) for any subset of items B. Submodularity of f
implies that д is also submodular. It suffices to show that E[д(Aℓ)]

is at least (1 − ϵ1/r)E[д(OPT)]. We also note that Greedy returns

the same solution when it maximizes д instead of f . In other words,

proving the claim for every round ℓ is equivalent of proving it for

the first round in which f and д are the same. First of all we show

that among the selected items of all machines ∪mi=1Si , there exists

a set B∗ with expected д value at least (1 − 2

α)д(OPT), and size at

most (1 + α2 ln(α))k . Then we can show that running greedy on

the set of all selected items, and choosing |B∗ | ln(α) items yields

a final solution S with д(S) ≥ (1 − 1

α)д(B
∗) which completes the

proof.

We claim that for set B∗ = OPT
S ∪ (∪

α ln(α)
i=1 Si), we have that

E[д(B∗)] ≥ (1 − 2

α)д(OPT). It is important to note that we are

lower bounding the expected value of д(B∗). By definition, we have∑
x ∈OPT ∆(x ,B

∗ ∪OPTx) is equal to д(B∗ ∪OPT) −д(B∗) which is

at least д(OPT) − д(B∗). At this point, we only need to show that

the expected value of

∑
x ∈OPT ∆(x ,B

∗∪OPTx) is at most
2

α д(OPT).
Since the expected value of a sum is equal to the sum of the expected

value of summands, we can focus on upper bounding expected value

of ∆(x ,B∗ ∪ OPT
x) for each x ∈ OPT. Each x ∈ OPT belongs to

one of the following three categories:

• x ∈ OPTS : In this case, x is also in B∗, and therefore ∆(x ,B∗∪
OPT

x) is zero.
• x ∈ OPT

NS
i for some 1 ≤ i ≤ α ln(α): Item x was not

chosen as one of the αk items in Si . Therefore the mar-

ginal value of each item added to Si was higher than the

marginal value of adding x at that moment. Let δj be how
much the value Si increased when its j th item was added

to it. So we have д(Si) =
∑αk
j=1 δj . Since f is submodu-

lar, the marginal values to set Si decrease as we add more

items to Si . So ∆(x ,Si) (at the end when Si has all its αk
items) is less than δj for each 1 ≤ j ≤ αk . We conclude

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

28

that ∆(x ,Si) ≤ д(Si)/(αk). If д(Si) is at least д(OPT), the
claim is proved because we know Si ⊂ B∗, and therefore

д(B∗) ≥ д(Si) ≥ д(OPT) in this case. Otherwise, ∆(x ,Si) is

less than
д (OPT)
αk . Therefore for every x ∈ ∪

α ln(α)
i=1 OPT

NS
i ,

we have ∆(x ,B∗ ∪ OPT
x) ≤ ∆(x ,Si) <

д (OPT)
αk where the

first inequality holds by definition of submodularity, and i is
chosen such that x ∈ OPTNS

i .

• The last case is when x is not in any of the sets OPT
S
,

and {OPTNS
i }

α ln(α)
i=1 in which we upper bound E[∆(x ,B∗ ∪

OPT
x)] as follows.

We show that for any item x ∈ OPT, the probability of x being

outside all these sets is at most 1/α . We also know by submodularity

that ∆(x ,B∗ ∪ OPT
x) ≤ ∆(x ,OPTx). Therefore the expected value

of ∆(x ,B∗ ∪OPTx) cannot be more than ∆(x ,OPTx)/α in this case.

Intuitively, the probability of selecting an item x (Pr [x ∈ ∪mi=1Si])

is the same as Pr [x ∈ OPTSi] for any arbitrary machine i . The event

that item x ∈ OPT is not selected (< OPTS), and it also is not part

of any of the α ln(α) sets {OPTNS
i }

α ln(α)
i=1 is equivalent of saying

that among α ln(α) randomly chosen machines (1,2, · · · ,α ln(α)),
they all select x if it is sent to them. But x is in fact sent to some

other machine that did not select x . This is a very unlikely event

as follows. If the probability x being selected (event x ∈ OPTS) is
higher than 1 − 1

α , the above event has probability less than
1

α .

Otherwise, assuming the sets {OPTNS
i }

α ln(α)
i=1 are independent, the

probability that x is in none of them is at most (1 − 1

α)
α ln(α) ≤ 1

α
which concludes the proof. This part of the proof and how to deal

with the dependencies are formalized in Lemma 3.2 of [21].

We conclude that the total E[
∑
x ∈OPT ∆(x ,B

∗ ∪OPTx)] is upper

bounded by

∑
x ∈OPT

д (OPT)
αk +

∆(x,OPTx)
α which is at most

2д (OPT)
α

because there are at most k items in OPT, and we know that the sum∑
x ∈OPT ∆(x ,OPT

x) is equal to д(OPT) by definition of ∆ values

and OPT
x
. This means that set B∗ has expected value at least (1 −

2

α)д(OPT).
We note that items of B∗ are among the selected items ∪mi=1Si ,

and Algorithm1 has the option of adding them to set S in lines

10 − 11. For α2 ln2 (α) = |B∗ | ln(α) times, the maximum marginal

item is greedily chosen and added to S . Using the classic analysis
of Greedy algorithm [24], we know that д(S) should be at least

(1 − 1

|B∗ |)
|B∗ | ln(α)д(B∗) ≥ (1 − 1

α)д(B
∗). We note that we showed

д(S) ≥ (1 − 1

α)д(B
∗) not in expectation but in any case which is a

stronger claim. This way we can combine it with the lower bound

on expected value of д(B∗). We conclude that E[д(S)] is at least

(1− 1

α) (1−
2

α)д(OPT) ≥ (1− 3

α)д(OPT) = (1−ϵ1/r)д(OPT) which
completes the proof. □

2.2 Improving the Solution Size by Multiplicity

BicriteriaGreedy returns a set S with E[f (S)] ≥ (1 − ϵ) f (OPT)

and Õ (k
ϵ 2/r) items in r rounds. Although one can choose the right

number of rounds r to reduce the number of selected items, we

propose the following simple trick that improves this upper bound

to around Õ (k
ϵ 1/r). In line 6, instead of just a random partitioning

of items, we send each item to C = α ln(α) (multiplicity factor)

randomly chosen machines which is similar to the multiplicity idea

of [21]. With multiplicityC , we prove that we can achieve the same

approximation guarantees as before while selecting much fewer

items in lines 9−11. In line 9, we will select only (α ln
2 (α)+ ln(α))k

items instead of (α2 ln2 (α) + ln(α))k in the new algorithm.

Theorem 2.3. The new Algorithm 1 with multiplicityC = α ln(α)
also returns a set S with expected value at least (1 − ϵ) f (OPT), and
size at most r (α ln(α) + ln(α))k items where α = 3

ϵ 1/r .

Proof. The changes in the number of selected items in line 11

are reflected in the new upper bound on size of S . We should show

that expected value of S is still at least (1 − ϵ) f (OPT). Similar to

Theorem 2.2, we use Lemma 2.1 to lower bound the marginal value

gained at each round. The only part that changes in the proof of

Lemma 2.1 is the definition of B∗. We no longer need to include

C = α ln(α) sets {Si }
C
i=1 in B∗ because sending each item to C

random sets incorporates that idea automatically. We define B∗

to be OPT
S ∪ S1. The number of items we select in line 10 of the

new algorithm is (α ln
2 (α) + ln(α))k which is equal to |B∗ | ln(α)

as expected. To lower bound the value of B∗, we still need to upper

bound ∆(x ,B∗ ∪ OPT
x). The first two cases we considered for x

are proved the same way. We just need to show that for each item

x ∈ OPT, the probability that x is not in OPT
S
nor in OPT

NS
1

is at

most
1

α . Since each item is sent to C random machines, this event

is equivalent of saying that a random machine (machine 1) wants

to select x , but none of the the other C random machines that we

actually send x to does not want to select x . We have upper bounded

this probability in proof of Lemma 2.1 by
1

α . The rest of the proof

remains the same. □

We provide Algorithm HybridAlg with slight changes to im-

prove solution size. In addition to themultiplicity factorC = α ln(α),
we change the second selection procedure in lines 9− 11 as follows.

After the machines select sets S1,S2, · · · ,Sm , algorithm HybridAlg

adds set S1 to S , and then for ln(α)k iterations, greedily chooses the

item with maximum marginal value to S among items in ∪mi=2Si ,
and adds it to S .

Theorem 2.4. Algorithm HybridAlg returns a set S with expected
value at least (1 − ϵ) f (OPT), and size at most r (α + ln(α))k items

where α = 3

ϵ 1/r .

Proof. The proof is very similar to the proofs of Theorems 2.2

and 2.3, and crucially uses Lemma 2.1. In the proof of Theorem 2.3,

we show that in each round д(S1 ∪ OPT
S) has expected value at

least (1 − 2

α)д(OPT). By adding S1 to S , we increase the value of
S by д(S1). We need to show that the remaining items gain most

of the remaining marginal value д(S1 ∪ OPT
S) − д(S1). Since there

are at most k items in OPT
S
, and we greedily insert k ln(α) items

to S . The extra marginal value we achieve is at least (1− 1

α) (д(S1 ∪

OPT
S) − д(S1)). We conclude that in total the expected marginal

value added in a round is at least (1 − 1

α)д(S1 ∪OPT
S). The rest of

the proof remains the same. □

3 HARDNESS RESULTS

A centralized greedy algorithm achieves a 1 − ϵ approximation

guarantee by outputting only k ln(1/ϵ) items. Note that the de-

pendence on 1/ϵ is logarithmic when the algorithm has access to

the whole dataset (all items). The number of items our distributed

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

29

algorithms return have polynomial dependence on ϵ , i.e. 1/ϵ1/r

for r rounds. In this section, we provide some evidence that why

this polynomial dependence is necessary. In particular, we prove

achieving an approximation factor of 1 − ϵ in one round requires

outputting Ω(k/ϵ) items which matches our positive algorithmic

bounds as well. Here by one round, we mean distributing the data

either randomly or worst case among distributed machines, then

gathering the selected items of all machines in one place and choos-

ing a final solution among them. The result focuses on distributed

algorithms that perform in one distributed round which consists

of a) partitioning the items amongm machines either randomly or

in a worst case partitioning, b) each machine outputs a summary

of the data it has received (e.g. a subset of its items) and finally c)

a central machine puts together all summaries and outputs a final

solution based on the union.

Theorem 3.1. For any k > 0, there exists some n, m and an

instance of submodular maximization with n items,m machines and

cardinality constraint k such that any distributed algorithm with

approximation guarantee 1−ϵ in one distributed round should output
at least Ω(k/ϵ) items as the final solution.

Proof. We construct a coveragemaximization instance in which

each item is a subset of a large ground set of L elements, and the

submodular value of a collection of these subsets (items) is defined

to be the number of elements that their union covers (among the

L elements). In this instance, suppose L ≫ n, and n,m ≫ k . There
three categories of items:

• A collection of k/2 equal size disjoint subsets (items) A =
{S1,S2, · · · ,Sk/2} that cover 1 − 2ϵ fraction of the universe

altogether. In particular, each set Si has size
1−2ϵ
k/2 L since they

are all disjoint. Assume that L is chosen such that
1−2ϵ
k/2 L is

an integer.

• A collection of k/2 equal size disjoint subsets (items) B =
{T1,T2, · · · ,Tk/2} that cover the other 2ϵ fraction of the uni-

verse. So each set Ti has size
2ϵ
k/2L since they are all disjoint.

Assume that L is chosen such that
2ϵ
k/2L is also an integer. So

far all these k/2 + k/2 = k sets in families A and B are dis-

joint and cover the whole universe. So the optimum solution

consists of these k subsets and has value L.
• A collection C of n − k subsets each with size

2ϵ
k/2L which is

equal to the sets in collection B. Each set in C is a random

subset of the ground set with
2ϵ
k/2L elements, and these sets

are chosen independent of each other. So unlike families A
and B, sets in family C are not disjoint and can potentially

intersect with each other and all other sets.

All n sets (items) are distributed randomly between them dis-

tributed machines. Sincem is chosen to be much larger than k , with
high probability, thek sets inA∪B end up in different machines.We

focus on set Ti ∈ B that has been sent to some machine 1 ≤ ℓ ≤ m.

The machine ℓ does not receive any other set in A ∪ B, instead it

may receive many sets from C. In the absence of other members of

A ∪ B, it is information theoretically impossible to distinguish set

Ti from the other sets sent to machine ℓ. Note that they all have

the same size and they are random sets. So the probability that set

Ti is chosen for the next round is proportional to the core-set size

k ′, i.e. k ′
n/m . Limitations on memory enforces this probability to be

very low, i.e. for instance less than ϵ for some choices of n ≫mk ′.
Therefore at most ϵ fraction of sets in B are selected for the next

round.

Even if all sets inA are chosen, given only
ϵk
2
sets inB are chosen,

one needs to output many sets in C to achieve an approximation

factor of 1 − ϵ . Formally, the selected sets of A ∪ B cover up to

1 − 2ϵ + ϵ × 2ϵ fraction of the ground set. To compensate for the

remaining gap of (1 − ϵ) − (1 − 2ϵ + ϵ × 2ϵ) = ϵ − 2ϵ2 > ϵ/2 (for

ϵ > 1/4), the final output set needs to have at least
k
10ϵ sets (items)

from C which completes the proof. This is true because each set in

C covers
2ϵ
k/2 × 2ϵL elements that were supposed to be covered by

sets of B, and using concentration bounds this number does not

exceed
5ϵ 2
k L. □

4 EMPIRICAL EVALUATION

In this section we empirically confirm the theoretical findings of

our paper by evaluating the algorithms described before over sev-

eral large-scale real-world and synthetic datasets. Recall that the

focus of this paper is not to introduce a new algorithmic technique

for submodular maximization (we use the well-known greedy al-

gorithm) but instead to explore theoretically and experimentally

the trade-offs between the number of items output, the number of

rounds used and the objective value obtained by the greedy dis-

tributed algorithm for maximizing submodular functions. Notice

that no previous work has explored the problem of outputting more

items to improve the solution. For this reason in this section our

comparison is done using the standard greedy distributed algorithm

and evaluating different output sizes and number of rounds using

multiple real and artificial datasets. All real datasets used are pub-

licly available. In this section we experiment with two different

instantiations of monotone submodular maximization: coverage

maximization and exemplar-based clustering.

4.1 Coverage maximization

First we evaluate the greedy distributed algorithm on the coverage

problem. In a coverage instance we are given a family N ⊆ 2
U
of

sets over a ground setU andwewant to findk sets fromNwithmax-

imum size of their union. We first present our real datasets for cov-

erage maximization. We consider datasets: DBLP co-authorship

has ∼ 300k sets over ∼ 300k elements for a total sum of sizes of all

sets of 1.0m elements; LiveJournal friendship [27] has 4m sets

over 4m elements for a total size of 34m. For the previous datasets

the sets represent neighborhoods of nodes. Finally we used Guten-

berg bi-grams with 41k sets over 99m elements for a total size

of more than 1b. Here sets represent bi-grams in books. We will

elaborate on these coverage datasets and the experimental setup as

follows.

Experimental setup DBLP co-authorship We extracted a

dataset from a DBLP snapshot [27] by creating a set for each author

representing the coauthors of that author. The ground set is the set

of all authors in DBLP. There are ∼ 300 thousands sets over ∼ 300

thousands elements for a total sum of sizes of all sets of 1.0 million.

LiveJournal friendship Here we create one set for each Live-

Journal user in a snapshot of the graph [27] where each set consists

of the friends of the user. The ground set is the set of all users. There

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

30

are about 4 millions sets over 4 millions elements for a total size of

34 millions.

Gutenberg bi-grams This dataset is obtained from the Guten-

berg project [1, 7]. Each set represents an English text and contains

all the bi-grams of the text. There are 41 thousands sets over 99

millions elements for a total size of more than 1 billion.

Synthetic instance We constructed a synthetic coverage in-

stance which is designed to be hard for the greedy algorithm. We

fix the ground set U of size n and we create an optimal solution

for size K covering all n items in the following way: We create

K disjoint sets by partitioning U in K equal parts of size
n
K .

4
All

these sets are added to the input family N. We also add to N other

t random sets, each consisting of s = ⌈nk (1 + ϵ1)⌉ randomly picked

items w/o replacement.

Experimental setup We first describe the implementation de-

tails of the distributed algorithm BicriteriaGreedy for coverage;

the one for exemplar-based clustering is similar andwill be sketched

in the next section. The input of the algorithm is a dataset of n sets,

a fixed size k of elements to output and number of rounds r . The

algorithm outputs k ′ = ⌊ kr ⌋ sets at each round except in the last

round where k ′ = ⌊ kr ⌋ + (k mod r) sets are output (for a total of
exactly k sets). Each round of the algorithm obtains k ′ sets in two

steps. In the first step of each round the dataset is divided randomly

inm blocks of data. Each set is assigned u.a.r. to a single block Ti
from them blocks T1, . . .Tm . We use multiplicity 1 as our experi-

ments shows it is sufficient to achieve very good experiment results.

We always fixm to be ⌈
√
n/k ′⌉. Then each block of data is analyzed

independently executing the greedy max coverage algorithm to

select k ′ sets. This is done in parallel by distributing the blocks

across multiple machines. In the second step of each round, themk ′

sets returned by the machines are gathered in a master machine

and the same greedy algorithm is run to obtain the final k ′ set of
the round. In this section we compare various outputting k = K
items and k > K items for this algorithm as well as outputting

uniformly at random sets.

Upperbound Since it is infeasible to compute exactly the opti-

mum value even for small k values so we compare the algorithms

with an upper-bound on the optimum solution value. One simple

upperbound is given by the maximum value of the objective func-

tion (for coverage it is |U |). We also obtain a more sophisticated

upperbound by post-processing the output of our algorithms as

follows. Let |S | = t be a solution obtained by our algorithm for size

t ≥ k . It can be show that f (S) plus the sum of the top k marginal

gains ∆(x ,S) for any x ∈ N is a provable upperbound to the optimal

value for any solution of size k . We report the results based on the

best upperbound achieved for all (dataset, k) pairs.
Results on synthetic instances In this experiment we set the

size of universe in the synthetic instance to |U | = 10,000, the optimal

solution size to K = 100, the number of random sets to t = 100,000

and ϵ1 = 0.2. The results are shown in Figure 1(a). It is possible to

make the following observations.

First notice that consistent with our theoretical analysis, out-

putting k ≥ K items allows to converge to the optimal value for

K with few additional items. In this experiment we get 95% and

99% of optimum for K = 100 outputting k = 1.5K and k = 2K

4
For simplicity we assume n multiple of K

 7000

 7500

 8000

 8500

 9000

 9500

 10000

100
150

200

C
o

v
e
ra

g
e

k

Coverage vs k
optimum = 10000 Single Machine

Distr. 1 Round
Distr. 2 Rounds
Distr. 3 Rounds
Distr. 4 Round

Distr. 5 Rounds
Random

(a) Synthetic dataset

 0

 0.5

 1

 1.5

 2

k=10
k=20

k=30
k=40

k=50

V
a
lu

e

k

Ratio Upperbound for Size=10
DBLP

Random DBLP
LiveJournal

Random LiveJournal
Gutenber

Random Gutenberg

(b) Real datasets

Figure 1: Coverage maximization

respectively. This confirm the main theoretical contribution of our

paper. Second, it is possible to see that for hard instances the use

of multiple rounds improves the solution w.r.t. the single round

algorithm. Notice also that a small number of rounds is sufficient in

practice to achieve results very close to the greedy algorithm ran

on a single machine. After 5 rounds we see no significant difference

(81% of upperbound with 5 rounds vs 81.2% for the single machine

algorithm with k = K = 100). Similar results holds for other k
and K values. This confirms our theoretical finding that the use of

multiple rounds improves the solution in hard instances. Finally, as

expected the greedy algorithm is always significantly better than a

random output.

Results on real datasetsWe also ran the algorithms on our real

datasets as shown in Figure 1(b). In this experiment, we fix a target

solution size K = 10 and run the algorithms with different values

of k ≥ K . The figure shows the ratio of the value of the solution

obtained by the distributed algorithm and the random baseline

for different k ≥ K ’s sizes over the upper-bound we computed

for the solution with size K = 10. We report the results for the

distributed algorithm using a single round (r = 1) andm =
√
n/k .

It is possible to notice that as expected outputting more items

increases the value of the objective function. It is interesting to

observe that in real instances the algorithm significantly exceeds

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

31

the worst case guarantees. With just k = 2K , we already obtain

> 98%, > 99%, > 98% of our upperbound for the DBLP, LiveJournal,

Gutenberg dataset respectively. We also ran the same experiments

with more rounds and the results are very similar showing that for

real instances algorithm already converges in one round.

4.2 Exemplar-based clustering

Exemplar-based clustering is a popular [22] way to identify k rep-

resentative points from set of points with a notion of distance

between them. In exemplar-based clustering we are given a setN of

points and an arbitrary non-negative distance function (dist) over

pairs of points.
5
For a set S ⊆ N we define the cost c (S) of set S

as c (S) =
∑
v ∈Nmins ∈S dist(v,s). The cost c (S) represent the sum

of the minimum distances from every point in N to the nearest

in S . Fix an point p0 such that ∀u,v ∈ N, dist(u,v) ≤ dist(u,p0).
We can now define the exemplar-based clustering as maximizing

the following monotone submodular objective function f (S) =
c ({p0}) − c (S ∪ {p0}) for S of size k . Notice that this is equivalent to
minimizing the cost of c (S ∪ {p0}).

We focus on the following datasets for exemplar-based clustering:

Wikipedia has 3.8 millions vectors of 100 dimensions representing

Wikipedia pages andTinyImages [26] has 80 millions vectors with

3072 dimensions representing images. We normalized all vectors in

the datasets to have a unit L2 norm. We use as distance function

the squared L2 distance, the maximum distance is 2 in all datasets,

and we fix p0 as a vector at distance 2 from any point in the dataset.

We provide a more detailed overview on these datasets:

English Wikipedia dataset This is a dataset obtained from a

snapshot of the entire English Wikipedia
6
with approximately 3.8

million articles. From each article we obtained a vector as follows:

we extracted the text (discarding HTML tags, hyperlinks, removed

stop words, etc) and then we ran Latent Dirichlet Allocation [16]

with 100 topics using the gensim package [25]. The result is a

probability distribution vector for each page of 100 dimensions.

TinyImages dataset This dataset [26], contains about 80 mil-

lions RGB images of size 32x32 obtained by an Internet crawl. Each

image is represented as a 3072 = 3 × 32 × 32 dimensional vector

(one dimension for each pixel-color entry). From each image we

obtain a 3072 dimensional vector by subtracting to each entry the

average value of the entries in the vector. In the experiments in-

volving the TinyImages dataset, to speed up the computation, we

use a standard dimensionality reduction technique (i.e., Johnson

Lindenstrauss random projection as in Achilopitas [3]) to convert

the 3072-dimensional vectors to 300 dimensions before processing

them. Notice that all objective function values shown are always

computed on the original (unmodified) vectors.

Experimental setupThe implementation details of the exemplar-

based clustering algorithm are similar to that of the coverage one.

We now highlight only the main differences. For this section we

use a lazy variation of the greedy algorithm [22]. When analyzing

a block of size N ′ of data to obtain k ′ elements we iterate over the

block for k ′ times each time selecting a new element with maxi-

mum marginal gain. Here however the iteration evaluates only a

independent u.a.r. subset of size c N
′

k ′ of the elements in the block as

5
The function need not to respect the distance properties.

6
https://meta.wikimedia.org/wiki/Data_dumps

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

k=10
k=20

k=30
k=40

k=50

V
a
lu

e

k

Ratio Upperbound for Size=10
Distr. Wikipedia

Random Wikipedia
Distr. TinyImages

Random TinyImages

Figure 2: Exemplar-based clustering results.

in [22]. We fix c = 3, i.e. each element is evaluated in expectation 3

times over the iterations. Moreover, in this section, the objective

function f (S) in the greedy algorithm is estimated it by computing

the distance of each element in S only to a u.a.r. sample V ′ of 500
elements from V (each machine receives an independent sample).

Notice that when we report the values of the objective function for

the solutions of the algorithm we do not use any estimation and

we compute the exact value.

Wewill use similar techniques of the coverage case to compute an

upperbound. The marginal gain in this case will be again estimated

from a random sample of 500.

Results The results using a single round for the distributed al-

gorithm are reported in Figure 2. Similarly to the coverage case

we fix a target solution size K = 10 and run the algorithms with

different k ≥ K values. The figure shows again the ratio of the value

of the solution obtained for different k ≥ K ’s over the upper-bound
for K = 10. It is possible to notice that the 1-round algorithm out-

putting more items increases the value objective significantly w.r.t

to the outputing k items. Consistent with our theoretical analysis

the algorithm approaches close to optimal value for the size K = 10

sets for k ≥ K ’s values (for k = 2K we already obtain > 87%, 88%,

of our upperbound for Wikipedia and TinyImages, respectively).

Similarly to the coverage case we observe strong convergence in

just 1 round and great gap with a random baseline.

Speed-ups of the distributed framework We evaluated the

gain obtained by the use of the distributed algorithm by comparing

it to the lazy greedy algorithm ran in a single machine. Even for

small datasets the centralized algorithm can take numerous hours

to complete in a single machine even for small k values. Moreover,

the distributed algorithm allows to analyze larger datasets as each

machine need to store only a fraction 1/m of the dataset. Running

the centralized algorithm on TinyImages would requires at least

200 GB of main memory.
7
We ran our framework fixing k and

m =
√
N /k and compared it with the centralized algorithm where

a single machine is assigned the entire dataset. The speedup for

the Wikipedia dataset using k = 10 and k = 20 was > 32 and > 37.

7
While 200 GB memory machines are available, distributed computing with standard

nodes (such as in MapReduce) is a more scalable approach widely used in practice.

The algorithm could also be implemented using external memory and many passes,

but this would increase even more the computational time.

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

32

https://meta.wikimedia.org/wiki/Data_dumps

Notice that we achieve substantial speedups even for such small

datasets. The speedup for larger dataset are significantly larger

however running the centralized algorithm on the larger dataset is

simply infeasible (or expensive) for the memory requirement time

required to run the experiment.

The centralized algorithm did not complete after many hours

using larger k’s or any other dataset. We also compared the solution

obtained by the one round algorithm with the centralized one.

The results shows that the distributed algorithm obtains > 99.6%,

> 99.7% of the value of the centralized one for k = 10 and k = 20

respectively.

5 CONCLUSIONS

We addressed the problem of submodular optimization under cardi-

nality constraints in distributed setting. We analyzed an efficient

constant-round distributed algorithm that can achieves the 1 − ϵ
approximation of the optimum for size k for ϵ > 0 by allowing to

output more than k items. We conductance an extensive empirical

evaluation showing that almost optimum solutions can be obtained

in few rounds in large-scale real dataset while outputting few more

items.

Acknowledgements

We thank MohammadHossein Bateni for his comments and for

sharing the datasets.

REFERENCES

[1] Gutenberg. search project gutenberg. https://www.gutenberg.org/ebooks/, 2016.

[2] Z. Abbassi, V. S. Mirrokni, and M. Thakur. Diversity maximization under matroid

constraints. In KDD, KDD ’13, pages 32–40, New York, NY, USA, 2013. ACM.

[3] D. Achlioptas. Database-friendly random projections: Johnson-lindenstrauss

with binary coins. J. of computer and System Sciences, 2003.

[4] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause. Streaming sub-

modular maximization: Massive data summarization on the fly. In KDD, 2014.

[5] R. Barbosa, A. Ene, H. L. Nguyen, and J. Ward. The power of randomization:

Distributed submodular maximization on massive datasets. In ICML, pages

1236–1244, 2015.

[6] R. Barbosa, A. Ene, H. L. Nguyen, and J. Ward. A new framework for distributed

submodular maximization, 2016.

[7] M. Bateni, H. Esfandiari, and V. S. Mirrokni. Distributed coverage maximization

via sketching. CoRR, abs/1612.02327, 2016.

[8] G. E. Blelloch, H. V. Simhadri, and K. Tangwongsan. Parallel and i/o efficient set

covering algorithms. In SPAA, pages 82–90, 2012.

[9] F. Chierichetti, R. Kumar, and A. Tomkins. Max-cover in map-reduce. In WWW,

pages 231–240, 2010.

[10] G. Cormode, H. J. Karloff, and A. Wirth. Set cover algorithms for very large

datasets. In CIKM, pages 479–488, 2010.

[11] U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652,

July 1998.

[12] U. Feige, V. S. Mirrokni, and J. Vondrak. Maximizing non-monotone submodular

functions. SIAM Journal on Computing, 40(4):1133–1153, 2011.

[13] B. J. Frey and D. Dueck. Mixture modeling by affinity propagation. In NIPS, pages

379–386, 2005.

[14] W. Gasarch and S. Fletcher. The egg game. http://www.cs.umd.edu/~gasarch/

BLOGPAPERS/egg.pdf.

[15] A. Guillory and J. A. Bilmes. Active semi-supervised learning using submodular

functions. arXiv preprint arXiv:1202.3726, 2012.

[16] M. Hoffman, F. R. Bach, and D. M. Blei. Online learning for latent dirichlet

allocation. In NIPS, 2010.

[17] R. kiveris, S. Lattanzi, V. Mirrokni, V. Rastogi, and S. Vasilvitski. Connected

components in mapreduce and beyond. In ACM SOCC, 2014.

[18] R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani. Fast greedy algorithms in

mapreduce and streaming. In SPAA, pages 1–10, 2013.

[19] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Filtering: a method for solving

graph problems in mapreduce. In SPAA, pages 85–94, 2011.

[20] H. Lin and J. A. Bilmes. A class of submodular functions for document summa-

rization. In HLT, pages 510–520, 2011.

[21] V. S. Mirrokni and M. Zadimoghaddam. Randomized composable core-sets for

distributed submodular maximization. In STOC, pages 153–162, 2015.

[22] B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrák, and A. Krause. Lazier

than lazy greedy. In AAAI, pages 1812–1818, 2015.

[23] B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause. Distributed submodular

maximization: Identifying representative elements in massive data. In NIPS,

pages 2049–2057, 2013.

[24] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations

for maximizing submodular set functionsâĂŤi. Mathematical Programming,

14(1):265–294, 1978.

[25] R. Řehůřek and P. Sojka. Software Framework for Topic Modelling with Large

Corpora. In LREC, Valletta, Malta, 2010.

[26] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data

set for nonparametric object and scene recognition. IEEE TPAMI, 2008.

[27] J. Yang and J. Leskovec. Defining and evaluating network communities based on

ground-truth. Knowledge and Information Systems, 42(1):181–213, 2015.

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

33

https://www.gutenberg.org/ebooks/
http://www.cs.umd.edu/~gasarch/BLOGPAPERS/egg.pdf
http://www.cs.umd.edu/~gasarch/BLOGPAPERS/egg.pdf

	Abstract
	1 Introduction
	1.1 Related Work.

	2 Algorithm BicriteriaGreedy
	2.1 Analysis
	2.2 Improving the Solution Size by Multiplicity

	3 Hardness Results
	4 Empirical evaluation
	4.1 Coverage maximization
	4.2 Exemplar-based clustering

	5 Conclusions
	References

