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ABSTRACT
We propose ego-spli�ing, a new framework for detecting clusters

in complex networks which leverage the local structures known as

ego-nets (i.e. the subgraph induced by the neighborhood of each

node) to de-couple overlapping clusters. Ego-spli�ing is a highly

scalable and �exible framework, with provable theoretical guar-

antees, that reduces the complex overlapping clustering problem

to a simpler and more amenable non-overlapping (partitioning)

problem. We can scale community detection to graphs with tens

of billions of edges and outperform previous solutions based on

ego-nets analysis.

More precisely, our framework works in two steps: a local ego-

net analysis phase, and a global graph partitioning phase. In the

local step, we �rst partition the nodes’ ego-nets using a partitioning

algorithm. We then use the computed clusters to split each node

into its persona nodes that represent the instantiations of the node

in its communities. Finally, in the global step, we partition the

newly created graph to obtain an overlapping clustering of the

original graph.
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1 INTRODUCTION
Detecting the clustering structure of real-world networks has e-

merged as an important primitive in a wide range of data analysis

tasks such as community detection [19], event detection [39], spam

detection [3], computational biology [22], link prediction [31] and

many others. As a result, the study of the topology of real world net-

works and of their clustering (or community
1
) structure is central

in modern network analysis. In particular, in recent years, several

models have been introduced to capture the community structure

of social networks [25, 27, 28] and numerous empirical studies

analyzed the community structures at a macroscopic [21, 28, 29]

and microscopic [13, 17] levels. One of the main observations in

this line of work is the lack of a clear macroscopic community

structure in real world networks. For instance in [29], Leskovec

et al. give an empirical evidence that at global level it is rare to

1
Note that in the paper we use the terms cluster and community interchangeably.
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observe medium-sized communities (around 100 nodes) with clear

clustering properties.

In addition, Abrahao et al. [1] collected empirical evidence show-

ing that real-world communities are rarely detected by commonly

used algorithms. In particular, real clusters overlap with each other

and haves many edges crossing cluster boundaries. As a result,

real world graphs do not exhibit a clear clustering structure at the

macroscopic level.

In sharp contrast with these �ndings, it has been observed that

while the community detection problem is hard at a macroscopic

level, it becomes simple at a microscopic level [13, 17]. �is is

especially true when we restrict our a�ention to local structures

know as ego-nets (a.k.a. ego-networks) which consist of the sub-

graph induced over the neighborhood of a single node in the graph.

Intuitively, this happens because, even if a node is part of many

communities, if we restrict our a�ention to a node and one of her

neighbors, there is only one or a limited number of communities in

which the two nodes interact, which present a clearer structure at

the level of the neighborhood. In fact, Epasto et al. [17] analyze the

ego-nets community structure of several graphs and show that it is

possible to detect high quality communities in them using a simple

out-of-the-shelf partitioning algorithms.

Inspired by this encouraging observation, we design a novel

framework which we call ego-spli�ing. �e main idea behind the

framework is to use the guidance of local clustering structure to

detect overlapping communities. �e idea of using local clustering

structure to obtain a global clustering is not new, for instance, Cos-

cia et al. [13] recently designed an algorithm based on this approach.

In this paper, however, we leverage for the �rst time this idea to

design a highly scalable and �exible framework with provable the-

oretical guarantees, that reduces the complex overlapping clus-

tering problem to a simpler and more amenable non-overlapping

(partitioning) problem. �is is particularly interesting because it

allows us to use the large literature on non-overlapping clustering

to approach the more complex overlapping clustering problem on

large-scale graphs.

More formally, our ego-spli�ing framework works in two steps:

a local ego-net analysis and a global graph partitioning. In those

steps we use two partitioning algorithms A`
and Aд

as a black

box.

�e �rst step of our framework is the ego-nets clustering. In

this step for every node u, the framework constructs the ego-nets

of u and then uses algorithm A`
to partition the neighborhood of

u. For each community in the partition ego-spli�ing creates a new

replica of u (which we call persona) that is associated uniquely with

a cluster in the partition. �en we map each edge between nodes in

the original graph to an edge between personas. �e output of this

step is a new graph which we refer to as the persona graph where
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each node u is replaced by a series of copies called the personas of

u.

�en, in the second step of our framework, the global partition

step, ego-spli�ing runs a partitioning algorithm Aд
(potentially

the same as A`
) on the resulting persona graph and returns the

clustering detected by Aд
.

To clarify the main intuition behind our framework we now

present a visual example in Figure 1 where we show the execution

of our method using as clustering algorithmsA`
andAд

the simple

connected component algorithm.
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Figure 1: �e ego-splitting framework applied to a simple
graph to transform an overlapping clustering problem into
a partitioning problem.

First, note that in the graph in Figure 1 there are 3 overlapping

communities: {a,b,c}, {c,d ,e, f }, { f ,д,h}. In particular nodes c and

f are part of two communities. Although, when restricting the

a�ention to the the ego-net of any speci�c node (which recall,

does not includes the node itself), the communities are naturally

de-coupled. For instance, consider the ego-net of c in Figure 1(b),

when we consider the graph induced on c’s neighborhood, the two

communities of c are easy to identify–they correspond exactly to

the two connected components {a,b} and {d ,e, f }. So by using

connected components our framework would be able to detect that

even if there is one single node c in the graph, c has in reality two

personas and so it would split c into two di�erent nodes: c1 and c2.

Note that besides nodes c and f the other nodes participate in a

single community. In this case our algorithm keeps these nodes in

a unique persona, for instance, d1 in this case of d .

A�er the �rst local step, in the second global step the connected

component algorithm can easily detect the overlapping community

structure of the graph by partitioning the persona graph in the

clusters {a1,b1,c1}, {c2,d1,e1, f1} and { f2,д1,h1} which corresponds

to overlapping clusters in the original graph.

Even if this anecdotal example may look arti�cial at �rst sight, it

captures well the complexity of real world graphs where people or

entities are part of a multitude of communities. For example we can

imagine node c in Figure 1 as a college student that participates in

two clusters representing her college friends and her friends from

a sports club. Clearly Figure 1 is an oversimpli�ed scenario but, in-

terestingly we observe empirically that our ego-spli�ing framework

works well also in more complex realistic se�ings. While for the

toy example in Figure 1 a simple articulation or bridge detection

would work, the ego-spli�ing framework is able to dis-entangle

communities even for highly connected graphs without bridges or

articulations as we show in various examples later in the paper.

Notice also that more sophisticated algorithms than simple con-

nected components can be used both at the ego-net clustering and

at the persona clustering step. In fact, thanks to its �exibility, our

framework can be used to transform any partitioning algorithm in

an overlapping clustering algorithm.

Our Contribution. We introduced the new ego-spli�ing frame-

work to reduce the overlapping clustering problem to a non-over-

lapping partition problem. Our methods scale easily in distributed

se�ings, enabling the analysis of the overlapping community struc-

ture in graphs with tens of billions of edges using standard non-

overlapping clustering algorithms.

We analyze the performance of the method both experimentally

and theoretically. Experimentally we compare the performance

of our algorithm against state of the art ego-net based clustering

algorithms and measure their performance in terms of standard

metrics for clustering detection: F1-score and Normalized Mutual

Information (NMI). We show that ego-spli�ing outperforms other

algorithms in both metrics and both in real-world graphs with la-

beled communities (amazon, dblp, livejournal, orkut and friendster)

and in synthetic benchmark graphs constructed by Lanchine�i et

al. [26].

We also analyze ego-spli�ing theoretically in a random over-

lapping clusters model, where clusters are chosen to be random

subsets of the vertex set and for each cluster we overlay a random

Erdös-Renyi graph. We bound the Jaccard similarity between the

clusters produced by the algorithm and the original clusters used

by the model and show that, for natural ranges of parameters, the

algorithm is able to perfectly reconstruct the clusters in the limit.

2 RELATEDWORK
�e related works span large research areas such ego-net analysis

and community detection. In this section we restrict ourselves to

reviewing only the most closely related papers in these areas.

�e concept of ego-net (or ego-network) was �rst introduced in

the seminal work of Freeman [20]. �en the study of ego-nets es-

tablished itself at the basis of social network analysis [11, 15, 18, 38].

Recently, a widespread a�ention has been devoted in the computer

science community on mining ego-nets. In their pioneering work,

Rees and Gallagher [36] proposed to the use of ego-nets to �nd

a global clustering of the graph. �e core idea of their algorithm

is to �nd basic communities by computing the weakly connected

components for each ego-net a�er removing the ego from it. �en

to obtain a global clustering they merge communities that over-

lap signi�cantly. Coscia et al. [13] built on this work employing

label propagation algorithms to cluster the ego-nets and analyze

di�erent merging strategies. �e merging procedures applied are

not scalable as they require O (n2) computation in the worst case.

More recently Buzun et al. [12] and Liakos et al. [14] introduced

distributed algorithms for the variation of this problem problem.

We observe that unfortunately both solutions are more complex

and less �exible (they are tailored to the use a speci�c underlying

clustering algorithm) than ours. In addition the authors do not

show any theoretical guarantees of their algorithms. �e work [14]
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also assumes to know a set of seeds in each community which the

algorithm expands locally. �is is a di�erent problem from the one

we address of producing an overlapping clustering of the entire

graph. To the best of our knowledge we are the �rst to introduce the

concept of persona graph and to leverage it for obtaining a scalable

and distributed ego-net based overlapping community detection

method with provable guarantees.

In a di�erent line of work, McAuley and Leskovec [33] provided

a machine learning approach to cluster ego-nets. Subsequently

Yang et al. [43] proposed an extension of this model for directed

and undirected graphs. Finally, Li et al. [30] extended their learn-

ing model to also capture hidden a�ributes that are not explicitly

present in the input.

�e literature on community detection is very rich, for a good

survey on the topic refer to [19]. Our paper is particularly related

to the overlapping community literature. Whang et al. [40] develop

an overlapping community detection algorithm based on seed set

expansion. �e algorithm optimizes for conductances and requires

a set of input seeds. Unfortunately, the algorithm does not have

any theoretical guarantees. Furthermore, no distributed implemen-

tation of the algorithm is presented in the paper. In another paper

Amore�i et al. [4] propose a parallel (not distributed) implementa-

tion of Demon [13] on mid-size graphs. Other relevant overlapping

community algorithms have been presented in [7] and in [23], un-

fortunately no distributed implementation of those algorithms is

known and so they cannot scale to very large graphs. Finally, the

overlapping community problem has been analyzed theoretically

in several papers [5, 6, 24], although the proposed algorithms are

mostly theoretical and have not been evaluated in practice.

Finally, our work is also related to the edge partitioning prob-

lem [2, 32]. In the edge partition problem the objective is to �nd

an algorithm to partition the edges in di�erent communities. �is

problem received signi�cant a�ention because it allows us to com-

pute an overlapping clustering of the graph by simply computing a

partitioning of the edges of the graph. Interestingly, we note here

that our framework can be used to obtain scalable algorithms for

this problem as well.

3 CLUSTER DETECTION PROBLEM
In the overlapping community detection problem the goal is to

design an algorithm R which consumes an undirected graph G =
(V ,E) and outputs a collection S′ = R (G ) of (possibly overlapping)

subsets of the node set V which we call clusters, i.e. each C ∈ S′ is

a subset C ⊆ V and two sets C,C ′ ∈ S′ can overlap.

In this paper we try, as much as possible, to be agnostic to a

precise de�nition of what a cluster is. For this reason instead of

speci�c quality function to optimize we use a cluster reconstruc-

tion approach to evaluate our method. In a cluster reconstruction

formulation we assume that there is a set S of subsets of the nodes

which we call ground-truth clusters and the algorithm is tasked with

recovering such clusters. Of course, for the detection problem to

be meaningful, S and G must be related in a way that it is possible

to extract information about S from G.

In order for the problem to be more concrete, we de�ne two

di�erent scenarios where we want to evaluate our algorithms. �e

�rst is that of labeled datasets, where graphs come with metadata

identifying subsets of nodes that are known to be communities and

that we want to retrieve. �is is particularly common for social

networks (many examples are shown in the experimental section).

A second scenario is that of generative models, where a random

process generates a graph from a set of clusters and the algorithm

needs to recover those clusters having only access to the graph. We

evaluate our methods in this context in our theoretical analysis.

3.1 Evaluating a detection algorithm
In most cases, exact reconstructions of the communities is unre-

alistic and we will se�le for approximate reconstructions. In the

rest of the subsection we de�ne several notions of approximation

in comparing two clusterings which are standard in the literature.

Given a ground truth cluster C ⊆ V and reconstructed cluster

C ′ ⊆ V we de�ne the precision P (C ′,C ) = |C ∩C ′ |/|C ′ | as the

fraction of the reconstruction that is in the ground truth and the

recall R (C ′,C ) = |C ∩C ′ |/|C | as the fraction of the ground truth

that is in the reconstruction. �e notions of precision and recall are

o�en combined in a single number between 0 and 1 called F1-score,

de�ned as:

F1 (C
′,C ) = 2 ·

P (C ′,C ) · R (C ′,C )

P (C ′,C ) + R (C ′,C )

�e notion of F1 has the additional advantage of being symmetric,

i.e., F1 (C
′,C ) = F1 (C,C

′) and of being such that F1 (C,C
′) = 1 i�

the sets C and C ′ are equal.

Now that we can compare two clusters, we de�ne a metric for

evaluating the set of clusters detected:

F1 score. Given a collection of ground truth clusters S and a

collection of detected clusters S′, a widely used [13] measure of

accuracy is the F1 score of the reconstruction with respect to the

ground truth as follows:

F1 (S
′,S) =

1

|S′ |

∑
C ′∈S′

max

C ∈S
F1 (C

′,C )

which corresponds to the average F1 score of a reconstructed clus-

ter with respect to the best match in the ground truth.

Normalized Mutual Information (NMI). We will also use an-

other standard measure of detection quality based on information

theory developed by Lancichine�i and Fortunato [26] and later

re�ned by McDaid et al [34]. �e measure was carefully cra�ed

to avoid various pitfalls of previous measures and it is quite in-

volved. We refer to the cited papers for an exact description and a

comprehensive discussion of its merits.

4 EGO-SPLITTING FRAMEWORK
�e main algorithmic idea in the paper is that each node in the

graph is a blend of di�erent personas. Instead of seeking to solve

the clustering problem directly, we �rst split each node in di�erent

personas. �is disentangles the di�erent clusters and makes the

graph simpler to cluster.

Before we can describe the procedure in detail we establish

notation and de�ne some standard notions in graph theory:
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Figure 2: Clustering the ego-nets, splitting the ego and building the persona graph

4.1 Graph�eory Notation
An (undirected, unweighted) graph G = (V ,E) consists of a �nite

set V of nodes and an edge set E ⊂ V ×V such that u , v for each

(u,v ) ∈ E and (u,v ) ∈ E i� (v,u) ∈ E.
2

A non-overlapping clustering algorithm A produces for each

graph G = (V ,E) a partition A (G ) = (V1, . . . ,Vt ) of variable size.

We use the notation npA (G ) = t to denote the number of sets in the

partition. �e fact that A (G ) is a partition means that Vi ∩Vj = ∅
for i , j and thatV1∪ . . .Vt = V . An example of a non-overlapping

clustering algorithm is the connected components algorithm, which

simply splits the graph into connected components.

Given a graph G = (V ,E) and a subset of nodes U ⊂ V , we

de�ne the induced graph G[U ] = (U ,E ∩U ×U ). For a node u ∈ V ,

the neighborhood of u consists of the set of nodes connected to

it Nu = {v; (u,v ) ∈ E} and the ego-net of u consists of the graph

induced on the neighborhood G[Nu ]. �e ego-net represents the

local view from node u on the graph connections (notice that the

ego-net of u does not include the node u).

4.2 �e Framework
�e ego-spli�ing framework provides a general methodology for

constructing an overlapping clustering algorithm starting from two

(possibly equal) non-overlapping clustering algorithms: the local

clustering algorithm A`
and the global clustering algorithm Aд

.

�e ego-spli�ing algorithm processes a graph G and outputs a set

of clusters S′ as follows:

• Step 1: For each node u we use the local clustering algorithm to

partition the ego-net of u. Let A` (G[Nu ]) = {N 1

u ,N
2

u , . . . ,N
tu
u }

where tu = np(A` ,G[Nu ]).
• Step 2: Create a set V ′ of personas. Each node u in V will corre-

spond to tu personas in V ′ denoted by ui for i = 1, . . . ,tu .

• Step 3: Add edges between personas. If (u,v ) ∈ E, v ∈ N i
u and

u ∈ N
j
v then add an edge (ui ,vj ) to E ′.

• Step 4: Apply the global clustering algorithmAд
toG ′ = (V ′,E ′)

and obtain a partition S′′ of V ′.
• Step 5: For set C ′ ∈ S′′ in the partition of V ′ associate a cluster

C (C ′) ⊆ V formed by the corresponding nodes ofV , i.e.,C (C ′) =
{u ∈ V |∃i s.t. ui ∈ C

′}. Output S′ = {C (C ′) |C ′ ∈ S′′}.

In Figure 2 we show an example execution using connected com-

ponents as clustering method. In Figure 2(b) we depict Step 1 for

2
Notice that our algorithm could be conceivably adapted to directed and weighted

graphs but we do not pursue this direction in this paper.

node a: we look at the ego-netG[Na] and partition it. In Figure 2(c),

we add for each partition of the ego-net a persona of a associated

with that partition (Step 2). For example, persona a1 is associated

with nodes b,c,e . In Figure 2(d) we do the same process for node c ,

but since his ego-net has only one partition, we add single persona

of c associated with a,b,e,d . A�er this is done for all nodes (in

parallel), we build the persona graph, depicted in Figure 2(e). In

this graph there is an edge for each edge in the original graph,

for example, for edge (a,c ) in the original graph, we add an edge

between the persona of a associated with c (i.e. the persona of a
associated with the cluster to which c belongs in the ego-net of a)

and the persona of c associated with a (Step 3). Figure 3(a) depicts

Step 4 where we apply the global non-overlapping to the persona

graph and obtain clusters. Step 5 is �nally in Figure 3(b) where

we map the clusters de�ned on personas to overlapping clusters

de�ned on original nodes.

Clustering edges. �e transformation from the original graph

to the graph of personas can increase the number of nodes in the

graph, but keeps the number of edges constant, so in terms of mem-

ory, the persona graph consumes the same space as the original

one. Also, since there is a one-to-one mapping of the edges in both

graphs, the non-overlapping partitions of the persona graph also

imply a clustering of the egdes. We are able to say for each edge,

which cluster it belongs to. In that sense, our methodology can be

also viewed as a edge-disjoint clustering approach.

Ego-splitting at scale. A naı̈ve way to bound all ego-nets could

be prohibitively expensive, at the order of O (nm) for n = |V | and

m = |E |. Epasto et al [17] use a combinatorial bound on the number

of triangles to show all ego-nets can be constructed in timeO (m3/2),
which is a considerable gain for sparse graphs. Indeed, the bound

in practice can be much be�er than O (m3/2) and depends directly

on the number of triangles in the graph. �ey also show that ifT is

the time to cluster a graph withm edges, the total work to build all

ego-nets and cluster them is O (
√
mT +m3/2). Furthermore they

show that this step can be performed in two rounds of MapReduce.

One more step is required to build the persona graph and one to

associate the clusters of the persona graph to the original nodes.

Taking those results together we have:

Theorem 4.1. If T` (m) and Tд (m) are the total work of the local
and global algorithms on a graph of sizem (respectively), Rд is the
number of rounds of MapReduce required by the global partition

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

148



(a) non-overlapping partition

of the persona graph

(b) overlapping clusters in

original graph

Figure 3: Clustering the persona graph

algorithm and if the local partition can be run in memory for each
ego-net, the ego-spli�ing framework can be implemented in 4 + Rд
rounds of MapReduce with total workO (m3/2 +

√
mT` (m) +Tд (m)).

Notice for instance that if the both the local and global partition-

ing algorithms are O (m), and if the global partitioning operates in

O (1) rounds we can implement the entire approach using O (m3/2)
total work and O (1) rounds.

5 PROVABLE RECONSTRUCTION
GUARANTEES

We present a generative model with overlapping clusters in which

we are able to reconstruct most of the clusters exactly by using

the connected component algorithm as a non-overlapping partition

algorithm both in the ego-net clustering phase and in the persona

graph clustering phase. Connected component is arguably the sim-

plest (and most rudimentary) non-overlapping clustering algorithm

possible, but its analysis sheds light on the ability of our framework

to achieve provable guarantees even using a simple partitioning

method as a building block. It is conceivable that using more so-

phisticated algorithms allows to prove guarantees in other more

di�cult models.

In our model there are k clusters and each nodeu ∈ V is assigned

to a cluster C ∈ S iid with probability q. Now, between two nodes

of each cluster we add an edge with probability p. A di�erent way

to describe our model is that we pick k random subsets and overlay

an Erdös-Renyi graph on each of those subsets. We are presented

with the graph obtained by the union of such random graphs and

are asked to reconstruct what are the original subsets chosen.

We will show that for a range of parameters, it is possible to

reconstruct most of the random sets with high probability. We

don’t make any claim that the model corresponds to any real-world

network. Our goal here is simply to show that even in highly-

connected graphs with heavily overlapping clusters, it is possible

to disentangle them by analyzing the local ego-net structures using

a simple clustering algorithm in our framework.

Random Overlapping Clusters. We de�ne the generative pro-

cess P (n,k ,q,p) as the random process that starts with a set of n
nodesV = [n] and �rst sample a collection of k subsetsS as follows:

from 1 to k we sample C ∈ S by adding each node u ∈ V to C with

probability q, independently.

Now, we sample G as follows: we visit each C ∈ S and for each

we sample the edge sets EC as follows: for each u,v ∈ C with u , v
we add edge (u,v ) to EC with probability p. In other words, EC is

the edge set of an Erdös-Renyi graph with vertex set C . Now the

edge set of the G is simply the union E = ∪C ∈SEC .

We note that the same edge (u,v ) can be present in more than

one set EC . In such case we still have only a single edge added to E.

Jaccard similarity of the reconstruction. �e ego-spli�ing al-

gorithm will be given access to G and will process it and produce

a set of clusters S′. For sake of the theoretical analysis we will

measure the quality of the reconstruction using the simple Jaccard

similarity over the set of clusters:

J (S,S′) =
|S ∩ S′ |

|S ∪ S′ |

�e Jaccard similarity is such that 0 ≤ J (S,S′) ≤ 1 and J (S,S′) =
1 i� the reconstruction is exact, i.e., S = S′. In our experimental

evaluation of the algorithm we show results for other more nuanced

and widely used quality measures like F1 score and NMI, notice

that Jaccard similarity as de�ned is a very demanding measure (it

consider a cluster with a single error as entirely wrong) and implies

also bounds on F1, since:

F1 =

∑
C ′∈S′ maxC ∈S F1 (C

′,C )

|S′ |
≥
|S ∩ S′ |

|S′ |
≥
|S ∩ S′ |

|S ∪ S′ |
= J

Our main result is as follows:

Theorem 5.1. If S and G are sampled from a P (n,k ,q,p) with
kq ≥ 1 and p ≥ c ′ log(npq/2)/(npq/2), then:

E[J (S,S′)] ≥ 1 − nk exp(−Ω(np2q)) −O
(
n3k2p2q6

)
Notice that the assumption kq ≥ 1 is natural as otherwise nodes

have fewer than one cluster in expectation.

To make our model more concrete we �rst consider the following

example:

Example 5.2. In the random overlapping clusters model, for 0 <

ϵ < 1

6
constant, let k = n, q = nϵ /n and p = 1/nϵ/4

. Under

those parameters each node is on average on kq = nϵ clusters.

Each cluster has average size nq = nϵ . So a back-of-envelope

calculation will get us that the degree of each node is roughly:

nϵ ·nϵ ·p = n1.75ϵ
. Since the theorem conditions holds, the Jaccard

coe�cient is E[J (S,S′)] ≥ 1 −O (n5.5ϵ /n).

Example 5.3. Set k = n, q = c log(n)/n (for a large enough

constant c) and p = O (1). Each node is on average on O (logn)
clusters and each cluster has average size O (logn). �e degree

of each node is O (log
2 n). Since the theorem conditions hold, the

Jaccard coe�cient is E[J (S,S′)] ≥ 1 −O ((log
6 n)/n).

In either example as n → ∞ the similarity E[J (S,S′)] → 1 so

we achieve perfect reconstruction in the limit.

5.1 Proof of Main�eorem
Our main tools will be Cherno� bounds and the connectivity thresh-

old in the Erdös-Renyi model. We will use the following version of

Cherno� bounds: if Xi ∈ [0,1] are independent random variables

and µ = E[

∑
i Xi ], then:

P ( |
∑
i Xi − µ | ≤ ϵµ ) ≥ 1 − 2 exp(−ϵ2µ/4)
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�e other probability statement we will require is the following. Let

G (n,p) be the Erdös-Renyi random graph on n nodes where each

edge is added with probability p. �e following classical lemma

bounds the probability of the graph being connected:

Lemma 5.4. In the Erdös-Renyi random graph G (n,p) if
p ≥ 6 log(n)/n, then

P[G (n,p) is connected] ≥ 1 − exp(−Ω(np))

�e proof of this lemma is standard and thus omi�ed.

Our �rst step in proving the theorem will be to analyze the

connectivity of the ego-net of u. For each C ∈ S, let GC = (V ,EC )
and de�ne NC

u to be the neighborhood of u in graph GC . Since the

�nal graph G is the union of the edges of the GC graphs, Nu =
∪C 3uN

C
u .

Ideally we would like to look at the induced graph G[Nu ] and

from it identify the sets NC
u and split u into ku personas, where

ku = |{C ∈ S ;u ∈ C}|. If all NC
u are disjoint and each is a connected

component of G[Nu ], then we are done.

Our �rst statement is that for each cluster C and each u ∈ C , the

graphs GC [C] and GC [NC
u ] are connected with high probability.

�e proof follows from concentration arguments. For each C we

bound the probability that |C | is at least
1

2
E|C | using Cherno�

bounds and condition on that event, we use Lemma 5.4 to bound

the probability that GC [C] is connected. For GC [NC
u ] the same

argument can be done being more careful regarding which events

to condition on. Due to space limitations we omit the proofs of the

following two lemmas:

Lemma 5.5. If p ≥ 6 log(npq/2)/(npq/2), then with at least

1 − nk exp

(
−Ω(np2q)

)
probability, the graph G[C] is connected for all C ∈ S and G[NC

u ] is
connected for all u ∈ C ∈ S .

�e previous lemma shows that with high probability, node u
won’t split NC

u when performing the ego-spli�ing operation using

connected components. However, it is also possible for two clusters

to be wrongly merged. �e next lemma describes the necessary

conditions so that a cluster can be exactly reconstructed:

Lemma 5.6. Fix a cluster C , if for for all u ∈ C the following
conditions hold:

(1) the induced graph G[C] is connected.
(2) the induced graph G[NC

u ] is connected.
(3) there are no edges between NC

u and Nu − NC
u .

then ego-spli�ing with connected component reconstructs cluster C
exactly.

Proof. �e three conditions guarantee that for each u ∈ C ,

when we analyze the graph G[Nu ], the set NC
u will be a connected

component, so the local step of ego-spli�ing will create a persona

of u associated with NC
u . We name this persona uC .

For each v ∈ NC
u , the personas uC and vC are connected in the

personas graph. �is component can’t contain any other personas

than uC for u ∈ C , otherwise it would imply an edge from NC
u to

Nu − N
C
u . �

�e following corollary follows directly from the proof of the

previous lemma:

Corollary 5.7. If the induced graph G[NC
u ] and the induced

graph G[C] is connected for all C and all u ∈ C , then each connected
component of the personas graph corresponds to a cluster C ∈ S or to
an union of clusters in S. Moreover, under this condition, ego-spli�ing
using connected components outputs at most k clusters.

Proof. In the conditions of the corollary, each node u will have

at most ku = |{C;C 3 u}| personas. We say that a persona of u is

compatible with cluster C if the connected component of G[Nu ]

corresponding to it contains NC
u . Each persona is compatible with

at least one cluster (but can be compatible with more than one).

Now, by the same argument as in Lemma 5.6, for each �xed C ∈ S,

all personas compatible with cluster C are connected. �erefore,

the personas graph has at most k connected components. �

Lemma 5.6 tells us that if all induced graphs G[C] and G[NC
u ]

are connected, there is only one source of errors: edges from NC
u

to Nu − NC
u . We say that an edge (v,w ) is bad for u,C if u,v ∈ C ,

v ∈ NC
u , w ∈ Nu − N

C
u and (v,w ) is in G.

Lemma 5.8. Assuming kq ≥ 1, given u,v,w ∈ V and C , an edge
(v,w ) is bad for u,C with probability O (k2q6p3).

Proof. We need u,v ∈ C , v ∈ NC
u and w < C which happens

with probability pq2 (1 − q). Now, to bound the probability that

edges (v,w ) and (u,w ) are in the graph we take the union bound

over the following event that there are clusters C ′,C ′′ , C such

that u,v ∈ C ′, v,w ∈ C ′′, (u,w ) is added to GC ′ and (v,w ) is added

to GC ′′ .

• if C ′ = C ′′ we have that the probability that u,v,w ∈ C ′

and edges (u,v ) and (v,w ) are added is: q3p2
.

• if C ′ , C ′′ we have that the probability that u,v ∈ C ′,
v,w ∈ C ′′ and edges (u,v ) and (v,w ) are added are: q4p2

.

So taking the union bound we get that the probability of a bad event

is O (pq2 (1 − q)[kq3p2 + k2q4p2
]) = O (k2q6p3). �

Proof of Theorem 5.1. Let D denote the event that G[C] and

G[NC
u ] are connected for every C ∈ S and u ∈ C . �e probability

of P[D] is bounded by Lemma 5.5.

If edge (v,w ) is bad foru,C we say that a bad edge event occurred

for (v,w ,u,C ). Lemma 5.8 bounds the probability of each bad edge

event. So if B is a random variable measuring the total number

of bad edge events, then: E[B] = O (n3k3q6p3) by Corollary 5.7,

conditioned onD, |S′ | ≤ |S|. Also, each bad edge can cause at most

two clusters to be merged, therefore: |S ′ | ≥ |S | − 2B. �is implies

a bound on the size of the union |S ∪ S′ | = |S | + |S ′ | − |S ∩ S ′ | ≤
2k − (k − 2B) = k + 2B. Now, we can bound the Jaccard similarity

as:

J (S,S′) =
|S ∩ S′ |

|S ∪ S′ |
≥

k − 2B

k + 2B
= 1 −

4B

k + 2B
≥ 1 −

4B

k

Computing expectations:

E[J (S,S′)] ≥ E[J (S,S′) |D]P[D] =

(
1 −

4E[B |D]

k

)
P[D]

Using that E[B |D]P[D] ≤ E[B] and substituting the bounds for

E[B] and P[D] we get the desired result. �
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Remarks about the model. We can also extend our model to

consider edges from two nodes that don’t share a cluster. �e usual

way to incorporate this to the model is to add an edge between any

two nodes with some probability r . We defer this discussion to the

full version of the paper.

6 EXPERIMENTS
6.1 Experimental setup
We implemented our framework using a large-scale distributed

computing infrastructure based on MapReduce.

Clustering algorithms. Our framework can use any non-overlap-

ping clustering algorithm to partition the ego-nets and the persona

graph (the two algorithms need not to be the same). For our exper-

imental evaluation we used iterative label propagation clustering

algorithms as non-overlapping partitioners in both phases. �is

choice is motivated by two reasons. First, label propagation al-

gorithms are highly scalable and can be easily implemented in

distributed se�ings. Second, previous ego-net based works have

used successfully label propagation algorithms [13, 17].

We use a standard non-overlapping label propagation method

based on the Absolute Po�s Model technique [37]. �is is the same

algorithm that was used in [17] to cluster ego-nets so we omit its

description here for lack of space. In our experiments in this paper

we set the parameter α = 0.1 (the penalty for missing a neighbor

with a certain label). During the ego-net clustering phase we apply

an in-memory version of this algorithm to cluster the ego-net. For

the larger datasets, during the persona graph clustering step, the

graph may not �t in memory, so we use a distributed variant of the

algorithm. In this variant each label update iteration is carried out

in parallel and we set α = 0.

Pre-processing and post-processing. We use the following two

heuristics that improves both the scalability and the accuracy of

our methods.

First, we preprocess the graphs to restrict our analysis to at

most 2000 neighbors of each node. If a neighbor v of u is not

processed in the ego-net of u we discard the edge in the persona

graph that corresponds to (u,v ). �is, besides increasing scalability,

also improves the accuracy of the algorithms as high degree nodes

are usually hubs connecting multiple communities so using them

in the ego-nets can confuse the community structure.

Second, we post-process the overlapping communities produced

by the algorithm discarding communities of size at most 4. �is

is because small communities are less informative. Notice that

previous work [13] used a more complex post-processing of the

output communities which was O (n2) while our post-processing is

straightforward and fast.

6.2 Comparison with other algorithms
We compare our method with a state of the art ego-net based over-

lapping clustering algorithm DEMON [13]. For this method we

use code provided by the authors and we set the parameter ϵ = 1

in the post-processing as suggested (i.e. overlapping clusters are

merged if and only if one is subset of the other). Consistently with

our method we discard communities of size at most 4.

Table 1: Statistics on the real-world graphs used

Graph Nodes Edges Persona nodes

amazon [42] 334,863 1,851,744 799,080

dblp [42] 317,080 2,099,732 611,068

livejournal [42] 3,997,962 69,362,378 22,970,759

orkut [42] 3,072,441 234,370,166 69,030,8073

friendster [42] 65,608,366 3,612,134,270 1,492,532,217

clueweb12 [9, 10] 955,207,488 67,823,249,559 55,433,497,920

As a baseline, we also used an o�-the-shelf distributed overlap-

ping label propagation algorithm (henceforth OLP). In this method

nodes are allowed to retain up to k most frequent labels. �en a

node is assigned to all the at most k clusters de�ned by the nodes

that have retained a label. We �x k = 3 in our experiments and

keep communities of size at least 5.

6.3 Datasets
Synthetic benchmarks. In the previous section we have shown

how our method can provably reconstruct highly overlapping com-

munities in a simple stylized generative model. For our experi-

mental evaluation we employ instead random graphs with planted

overlapping clusters produced by the more widely used and sophis-

ticated model of Lanchine�i et al. [26]. We chose this model for

consistency with previous ego-net based works [13] and because

the model replicates several properties of real-world graphs, such

as power law distribution of degrees, varying community sizes and

membership of nodes in varying community number.

We refer to [26] for a detailed description of the model. With the

code provided online by the authors we generated 3 set of graphs

referred as Benchmark-0.01, Benchmark-0.1 and Benchmark-0.3,

respectively. Each set of graphs contains 10 random instantiation

of the model with the same se�ings, we report averages over those

10 graphs for all algorithms. �e Benchmark-0.01 consist of the

same se�ings of [13] paper which we report here for convenience

(N=1000, k=25, maxk=50, mu=0.01, minc=20, maxc=50,
on=500, om=3) for Benchmark-0.1 and Benchmark-0.3 instead

have the following se�ings (N=1000, k=10, maxk=50, minc=5,
maxc=50, on=100, om=2) and mu set to 0.1 and 0.3, respectively.

Real-world graphs. We analyzed a set of widely used graphs

(amazon, dblp, livejournal, orkut, friendster) that have ground truth

clusters and are available from the SNAP collection. For these

graphs, we use the dataset with top quality communities as ground-

truth (more details in [42]). �e details of the graphs are reported

in Table 1. In this table we also report the number of persona nodes

identi�ed by our framework using label propagation as clustering

algorithm.

We also run our algorithms on the clueweb12 [9, 10] graph which

is web graph with tens of billions of edges but for which have no

ground truth clusters. All graphs are made undirected ignoring the

direction of the edges if present.

6.4 Results on synthetic benchmarks
Example persona graph. To gain an insight on how our frame-

work operates we �rst provide a visualization of a smaller synthetic

graph produced with Lanchine�i et al. model. For sake of visualiza-

tion we used a graph with only 100 nodes and 9 highly overlapping
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(a) Original Graph (b) Persona Graph

Figure 4: Color visualization of a small synthetic graph and
its persona graph.

Table 2: Accuracy in synthetic benchmarks

Ego-spli�ing DEMON OLP

Graph F1 NMI F1 NMI F1 NMI

Benchmark-0.01 0.9368 0.9403 0.4765 0.1670 0.6254 0.3149

Benchmark-0.1 0.7878 0.7100 0.1200 0.0000 0.7723 0.5571

Benchmark-0.3 0.6714 0.5076 0.1216 0.0000 0.6151 0.4405

ground-truth communities. Figure 4 shows the both original graph

and the persona graph output by our method, as plo�ed by the

standard Gephi [8] tool with the same visualization se�ing. Both

graphs have 1269 edges while the persona graph has 164 nodes

(from the 100 nodes in the original graph). �e colors represent the

communities identi�ed by Gephi on both graphs based the stan-

dard non-overlapping modularity-based algorithm of the tool. It is

possible to observe that while the community structure in the �rst

graph is not immediately clear, in the second the clusters are visibly

more separated. In fact in the �rst graph Gephi found only 5 com-

munities with a modularity of 0.25 while in the second it found 8

communities with a higher modularity of 0.60. �is visually shows

how our framework is able to disentangle the communities.

�antitative analysis. We now provide a more quantitative anal-

ysis of the accuracy of our algorithm in reconstruct the ground

truth communities in the benchmark graphs. �e results are shown

in Table 2. �e NMI is computed using publicly available imple-

mentation of [34], for F1 we use distributed computing to scale the

computation to large community outputs.

It is possible to observe our method using label propagation as

clustering algorithm outperforms all other benchmark methods in

all the graphs evaluated and in both accuracy measures. Notice how

in particular for the benchmark graph Benchmark-0.01 reported

in [13] we get close to > 93% F1 compared to 47% of DEMON [13].

6.5 Results on real graphs
We �rst report statistics on the communities identi�ed by our al-

gorithm. Figure 5(a) shows the distribution of the size of the over-

lapping communities identi�ed by our algorithm on the largest

social network analyzed Friendster. Notice how the distribution of
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Figure 5: Statistics on the overlapping communities output.

Table 3: Accuracy in real-world graphs

Ego-spli�ing DEMON OLP

Graph F1 NMI F1 NMI F1 NMI

amazon 0.0374 0.0809 0.0337 0.0310 0.0339 0.0450

dblp 0.1662 0.1041 0.1539 0.0309 0.1448 0.0645

livejournal 0.0490 0.0394 - - 0.0115 0.0148

orkut 0.0332 0.0060 - - 0.0267 0.0129

friendster 0.0051 0.0008 - - 0.0010 0.0006

community sizes follows a clear heavy tailed distribution (the plot

is in log scale, the other graphs have similar distributions). �is is

consistent with previous results in social networks [35]. Consistent

with previous studies [28] most communities have < 100 nodes. In

total our algorithm outputs the following number of communities

in the graphs analyzed: amazon 27,004; dblp 33,626; livejournal

49,954; orkut 131,773; friendster 905,520; clueweb 31,642,414. Fig-

ure 5(b) shows for the same graph the distribution of the number of

communities to which a node belongs in our output. Notice that a

large fraction of nodes belong to more than one community (∼ 30%

in Friendster) and that again the distribution of participation of

nodes in multiple communities is heavy tailed.

Accuracy. Finally, we report the accuracy of our method in real-

world graphs with ground-truth communities. �e results are in

Table 3. Consistently with the results in the random graphs our

method outperforms the other two methods in almost all cases. In

particular our method has always the highest F1 score and in all but

one case it has the best NMI score. �is con�rms our theoretical

results that shows that spli�ing the ego’s in persona allows the

overlapping community structure to be more easily detectable.

Results for DEMON on large graphs are omi�ed as the algorithm

did not �nish to run in the allocated time (the method employed a

slow post-processing which is not scalable in large graphs).

6.6 Scalability
Finally we evaluate the scalability of our method. In Figure 6 we

show the relationship between the total running time our algorithm

(total wall-clock time of the distributed execution) and the size of

the graph. We report the results as a ratio of the time used to

process a graph (resp. number of edges of the graph) and the time

used to process our smaller graph amazon (resp. number of edges

in amazon). It is possible to observe the high scalability of our

method. Even if clueweb has 30000 times more edges the execution
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time is only 80 times longer that of amazon. �is shows that our

method can scale to very large graphs with billions of nodes and

edges.

7 CONCLUSIONS AND FUTUREWORK
We presented a scalable and �exible framework for �nding overlap-

ping clusters. Our empirical and theoretical �ndings shows that,

using the local clustering structure of the ego-nets as guidance,

it is possible to disentangle the complex and highly overlapping

community structures of real-networks by spli�ing nodes into their

“personas”.

For future work, we would like to establish theoretical guarantees

in more nuanced models by using more sophisticated partitioning

algorithms. Another important direction is to adapt our methods

to incremental models of computation, since real world networks

are dynamic. Recent work [41] has observed a rich structure in the

overlap of communities which could be analyzed to further improve

our method. Finally, we believe further analysis of the structural

properties of the persona graphs could yield other insights on the

social network besides its clustering such as, for instance, the roles

of actors in a social network [16].
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