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Motivation

● Recommendation Systems: 
● Bipartite graphs with Users and Items. 
● Identify similar users and suggest relevant 

items. 
● Concrete example: The AdWords case. 

● Two key observations: 
● Items belong to different categories. 
● Graphs are often lopsided.



Modeling the Data as a Bipartite Graph
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The stationary distribution assigns a similarity 
score to each node in the graph w.r.t. node v. 

For a node v (the seed) and a probability alpha



The Problem

Millions of Advertisers Billions of Queries

H
undreds of Labels

Nike Store  
New York

Soccer Shoes

Soccer Ball

2$

3$

4$

1$

5$

2$

Retailers

Apparel

Sport  
Equipment



Other Applications

● General approach applicable to several 
contexts: 
●User, Movies, Genres: find similar users 

and suggest movies. 
● Authors, Papers, Conferences: find 

related authors and suggest papers to 
read. 



Semi-Formal Problem Definition
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Semi-Formal Problem Definition
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Goal:  

Find the nodes most  
“similar” to A.



How to Define Similarity?

● We address the computation of several node 
similarity measures: 
● Neighborhood based: Common neighbors, 

Jaccard Coefficient, Adamic-Adar.  
● Paths based: Katz. 
● Random Walk based: Personalized PageRank. 

● Experimental question: which measure is useful? 
● Algorithmic questions:  
● Can it scale to huge graphs? 
● Can we compute it in real-time?



Our Contribution

● Reduce and Aggregate: general approach to 
induce real-time similarity rankings in multi-
categorical bipartite graphs, that we apply to 
several similarity measures. 

● Theoretical guarantees for the precision of the 
algorithms. 

● Experimental evaluation with real world data.
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Challenges

● Our graphs are too big (billions of nodes) even for 
very large-scale MapReduce systems. 

● MapReduce is not real-time. 

● We cannot pre-compute the rankings for each 
subset of labels.



Reduce and Aggregate

Reduce: Given the bipartite and a category 
construct a graph with only A nodes that 
preserves the ranking on the entire graph. 

Aggregate: Given a node v in A and the reduced 
graphs of the subset of categories interested 
determine the ranking for v. 
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Aggregate (Run Time)
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Reduce for Personalized PageRank

●Markov Chain state aggregation theory 
(Simon and Ado, ’61; Meyer ’89, etc.). 

● 750x reduction in the number of node 
while preserving correctly the PPR 
distribution on the entire graph.
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 Run-time Aggregation



Koury et al. Aggregation-Disaggregation Algorithm

Step 1: Partition the Markov chain into DISJOINT subsets  

A B



Koury et al. Aggregation-Disaggregation Algorithm

Step 2: Approximate the stationary distribution on each 
subset independently.
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Koury et al. Aggregation-Disaggregation Algorithm

Step 3: Consider the transition between subsets.
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Koury et al. Aggregation-Disaggregation Algorithm

Step 4: Aggregate the distributions. Repeat until 
convergence.
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Aggregation in PPR

X Y

Precompute the stationary distributions individually

⇡A

A



Aggregation in PPR
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Aggregation in PPR

The two subsets are not disjoint!
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Our Approach

X Y X Y

● The algorithm is based only on the reduced graphs 
with Advertiser-Side nodes. 

● The aggregation algorithm is scalable and 
converges to the correct distribution.
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Experimental Evaluation

● We experimented with publicly available and 
proprietary datasets: 

● Query-Ads graph from Google AdWords > 1.5 
billions nodes, > 5 billions edges. 

● DBLP Author-Papers and Patent Inventor-
Inventions graphs. 

● Ground-Truth clusters of competitors in Google 
AdWords.
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Conclusions and Future Work

● It is possible to compute several similarity 
scores on very large bipartite graphs in 
real-time with good accuracy. 

●Future work could focus on the case 
where categories are not disjoint is 
relevant.



Thank you for your attention



Reduction to the Query Side
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Reduction to the Query Side
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This is the larger side of the graph.
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Convergence after One Iteration
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