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Events in Social Media Streams

• WWW2015 conference will be held in Florence.
• Hofmann confirmed keynote at WWW2015 in Florence
• WWW2015 opens May 20 in Florence

Dense  
subgraphs 
represent  
events!



Event Detection



Dynamic Community Detection Algorithms

Most algorithms assume a single static graph in input. 

Naive solution: run the algorithm once for each update.

GOAL: efficiently keep track of the communities as the 
graph evolve.



Densest Subgraph

H

Density H = 3/4
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Densest Subgraph in Static Graphs

• Community used in Social Networks, Web and 
Biology.

• Polynomial exact algorithm (Goldberg, 1984)
• (2+eps)-approximation MapReduce algorithm 

(Bahmani et al., 2012).



Densest Subgraph in Dynamic Graphs

No results known* in dynamic graphs with sublinear 
update time (before our publication).

Naive Approach: O(m + n) time per update!

* Bhattacharya et al. - to appear in STOC 2015. 
Strong guarantees in streaming model.



Our Problem

Goal: Preserve a 2+eps approximation with average time 
O(poly-log(n+m)) per update.

Notice: Much better than O(n+m) per update and 
includes output time!



Our Dynamic Graph Model

Start from an empty graph.

Arbitrary long sequence of edge updates arrives…

This models also node addition/removals implicitly.

(A, B) (B, C) (A, B)… …



Incremental and Fully-Dynamic

INCREMENTAL: arbitrary stream of edges additions only.

(A, B) (B, C)



Incremental and Fully-Dynamic

FULLY-DYNAMIC: stream of edges arbitrary additions and 
random deletion.

(A, B) (B, C) (A, B)



Our Goal

Design a Data Structure:
    1) AddEdge(u,v)
    2) RemoveEdge(u,v)

Both operations can output a new densest subgraph S or 
nothing.

Invariant: the last subgraph in output  
is a 2+eps approx. for the current graph



Result for edge additions (incremental)

Theorem: We maintain a 2+eps approx. in 
O(log^2(n) / eps^2) average time and linear space 

 Significant improvement over naive approach:  
O(m+n) average time



Result for edge additions and deletion 
(fully dynamic)

Theorem: We maintain a 2+eps approx. in 
O(log^4(n) / eps^4) average time and linear space. 
 

Very fast also in practice!



Roadmap 

• Review Bahmani et al. for static graphs.
• A new static graph algorithm.
• Incremental algorithm.
• Randomized fully-dynamic algorithm. 



Static Case - Bahmani et al. Algorithm

Let eps > 0:

Iteration: 1

1) Compute Avg. Deg = K

Graph G0
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Static Case - Bahmani et al. Algorithm

Iterate until all nodes are 
removed.

O u t p u t t h e d e n s e s t 
subgraph Gi.

T = 2.3

G2

T = 3.2

Graph G0
Graph G1



Static Case - Bahmani et al. Algorithm

Iterate until all nodes are 
removed.

O u t p u t t h e d e n s e s t 
subgraph Gi.

Graph G0
Graph G1

T = 2.3

G2

Theorem: (Bahmani et al.)  
2+eps approx. in log(n) steps.

T = 3.2



Towards a Dynamic Algorithm

• Idea: Store graphs Gi’s.
• When an edge is added update the Gi’s

u v

T = 2.3
T = 3.2

This ensures a 
2+eps 

approximation!

Graph G0 Graph G1



Towards a Dynamic Algorithm

u v

T = 2.3
T = 3.2

Deg > 2.3

Graph G0 Graph G1

• Idea: Store graphs Gi’s.
• When an edge is added update the Gi’s



Towards a Dynamic Algorithm

Graph G0

Graph G1

T = 2.6

T = 4.0

Chain effect!

• Idea: Store graphs Gi’s.
• When an edge is added update the Gi’s



Idea: fix Threshold T  for all iterations

• Use same threshold T at each iteration.
• Easier to analyze and maintain.

For correct threshold T: same approximation of Bahamani 
et al.’s algorithm.

You’d better  
use T = 3.1



Moving Threshold (Only Additions)
1) Set T = 1 to compute densest subgraph H and 
output it. 

This provides a 2+eps approx.   
in O(poly-log(n)) average time
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Moving Threshold (Only Additions)
1) Set T = 1 to compute densest subgraph H and 
output it. 

2) Maintain the Gi’ using threshold T as long as 
all nodes are removed in O(log(n)) steps.

3) Repeat from 1) with higher threshold T = T * 2

This provides a 2+eps approx.   
in O(poly-log(n)) average time



Fully-Dynamic Case

The analysis is significantly harder: 

• The density can increase/decrease in complex 
patterns… 

• …densest subgraph is stable under random removals. 
• We tackle the stability to recompute the subgraph 

few times.



Experimental Evaluation - Datasets

• DBLP& Patent: co-authorship graph. 

• LastFM: songs co-listened. 

• Yahoo! Answers: >1 Billions edges. Edge if two users 
answer the same question.



Evolution Densest Subgraph
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Evolution Densest Subgraph

Patent Citations - Sliding Window 5 years
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Evolution Densest Subgraph

Yahoo Answers - Sliding Window 100M edges
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Update Time vs Epsilon
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Comparison With Static Algorithm
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Conclusions and Future Work

• It is possible to maintain the densest subgraph 
efficiently in dynamic graphs. 

• Future work: Recent Techniques (Bhattacharya et al.) 
to define 2+eps with adversarial removes? 

• Top-k Densest Subgraph in Dynamic Graphs. 



Thank you for your attention



Recent Results - STOC

Concurrently to our work Bhattacharya et al., STOC 
2015 introduced a novel streaming algorithm for densest 
subgraph with strong guarantees. 

• Different model: Update vs Query time. 
• Strong space constraints (cannot store entire graph). 
• Adversarial additions and deletions. 

• 4+eps approx with O(n poly log) space, O(poly log) 
update time, O(n) query time. 

• 2+eps approx with O(n poly log) space, higher time 
complexity.



Incremental Case: Only Additions



Density vs Epsilon
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Analysis of the Algorithm

We divide the edge additions in Rounds.

Round 1 Round 2 

Add Add Add Add Add …

H HOverflow  

T <- T(1+eps)

Run of 
Static 

Algorithm

Run of  
Static 

Algorithm

Round i 

Add Add

H

output output output

Overflow  

T <- T(1+eps)



Densest Subgraph - LP Primal



Definitions

We say that an algorithm is a approximation of the 
densest subgraph problem for a > 1 if it outputs a graph 
with density at least:

OPT / a

We say that an operation has T amortized time if for any 
sequence of k update operations the total time is

O(k T)



Densest Subgraph - LP Primal Dual

• The dual problem is the well-known graph orientation 
problem.

• Given undirected graph G find directed graph H 
obtained orienting the edges of G arbitrarily, that 
minimizes the maximum in-degree.

• If G has orientation of max in-degree < D then density 
of densest subgraph is < D.

• Hence, if it is possible to remove all nodes by 
recursively removing nodes with degree < D then max 
density is < D.



Fully Dynamic Algorithm

We divide the edge additions and deletions in Rounds.

Round i 

Add Rem Add

H Invariant Fails

Run  
Static 

Algorithm

… …



Fully Dynamic Algorithm

We divide the edge additions and deletions in Rounds.

Round i 

Add Rem Add

H Invariant Fails

Run  
Static 

Algorithm

… …

Bad Round < O(m / log(n))  
removals

Good Round > O(m / log(n))  
removals



Fully Dynamic Algorithm

Round 1 

Rem Rem Add… …
Round 2 

Add Rem Add

Round 3 

Add Add Add …

Good Bad Bad

Idea: in good rounds removals “pay” for all the 
operations

We can show that there are never more than poly-log 
consecutive bad rounds (w.h.p)


