
Efficient Densest Subgraph
Computation in Evolving Graphs

Joint work with Silvio Lattanzi (Google Research,
NY) and Mauro Sozio (Télécom ParisTech)

Alessandro Epasto

Social Networks are Constantly Evolving

Brutus Julius

Brutus Julius Cleopatra

Social Networks are Constantly Evolving

Brutus Julius Cleopatra

Social Networks are Constantly Evolving

Brutus Julius Cleopatra

Social Networks are Constantly Evolving

Brutus Cleopatra

Social Networks are Constantly Evolving

Brutus CleopatraMark Anthony

Social Networks are Constantly Evolving

Events in Social Media Streams

• WWW2015 conference will be held in Florence.
• Hofmann confirmed keynote at WWW2015 in Florence
• WWW2015 opens May 20 in Florence

Dense
subgraphs
represent
events!

Event Detection

Dynamic Community Detection Algorithms

Most algorithms assume a single static graph in input.

Naive solution: run the algorithm once for each update.

GOAL: efficiently keep track of the communities as the
graph evolve.

Densest Subgraph

H

Density H = 3/4

Densest Subgraph

H

Densest Subgraph in Static Graphs

• Community used in Social Networks, Web and
Biology.

• Polynomial exact algorithm (Goldberg, 1984)
• (2+eps)-approximation MapReduce algorithm

(Bahmani et al., 2012).

Densest Subgraph in Dynamic Graphs

No results known* in dynamic graphs with sublinear
update time (before our publication).

Naive Approach: O(m + n) time per update!

* Bhattacharya et al. - to appear in STOC 2015.
Strong guarantees in streaming model.

Our Problem

Goal: Preserve a 2+eps approximation with average time
O(poly-log(n+m)) per update.

Notice: Much better than O(n+m) per update and
includes output time!

Our Dynamic Graph Model

Start from an empty graph.

Arbitrary long sequence of edge updates arrives…

This models also node addition/removals implicitly.

(A, B) (B, C) (A, B)… …

Incremental and Fully-Dynamic

INCREMENTAL: arbitrary stream of edges additions only.

(A, B) (B, C)

Incremental and Fully-Dynamic

FULLY-DYNAMIC: stream of edges arbitrary additions and
random deletion.

(A, B) (B, C) (A, B)

Our Goal

Design a Data Structure:
 1) AddEdge(u,v)
 2) RemoveEdge(u,v)

Both operations can output a new densest subgraph S or
nothing.

Invariant: the last subgraph in output
is a 2+eps approx. for the current graph

Result for edge additions (incremental)

Theorem: We maintain a 2+eps approx. in
O(log^2(n) / eps^2) average time and linear space

 Significant improvement over naive approach:
O(m+n) average time

Result for edge additions and deletion
(fully dynamic)

Theorem: We maintain a 2+eps approx. in
O(log^4(n) / eps^4) average time and linear space.

Very fast also in practice!

Roadmap

• Review Bahmani et al. for static graphs.
• A new static graph algorithm.
• Incremental algorithm.
• Randomized fully-dynamic algorithm.

Static Case - Bahmani et al. Algorithm

Let eps > 0:

Iteration: 1

1) Compute Avg. Deg = K

Graph G0

Static Case - Bahmani et al. Algorithm

Let eps > 0:

Iteration: 1

1) Compute Avg. Deg = K

2) Let T = K (1+eps)

Graph G0

T = 2.3

Static Case - Bahmani et al. Algorithm

Let eps > 0:

Iteration: 1

1) Compute Avg. Deg = K

2) Let T = K (1+eps)

3) Remove nodes with
degree < T

Graph G0

T = 2.3

Static Case - Bahmani et al. Algorithm

Let eps > 0:

Iteration: 2

1) Compute Avg. Deg = K

Graph G0
Graph G1

T = 2.3

Static Case - Bahmani et al. Algorithm

Let eps > 0:

Iteration: 2

1) Compute Avg. Deg = K

2) Let T = K (1+eps)

Graph G0
Graph G1

T = 2.3
T = 3.2

Static Case - Bahmani et al. Algorithm

Let eps > 0:

Iteration: 2

1) Compute Avg. Deg = K

2) Let T = K (1+eps)

3) Remove nodes with
degree < T

Graph G0
Graph G1

T = 2.3
T = 3.2

Static Case - Bahmani et al. Algorithm

Iterate until all nodes are
removed.

O u t p u t t h e d e n s e s t
subgraph Gi.

T = 2.3

G2

T = 3.2

Graph G0
Graph G1

Static Case - Bahmani et al. Algorithm

Iterate until all nodes are
removed.

O u t p u t t h e d e n s e s t
subgraph Gi.

Graph G0
Graph G1

T = 2.3

G2

Theorem: (Bahmani et al.)
2+eps approx. in log(n) steps.

T = 3.2

Towards a Dynamic Algorithm

• Idea: Store graphs Gi’s.
• When an edge is added update the Gi’s

u v

T = 2.3
T = 3.2

This ensures a
2+eps

approximation!

Graph G0 Graph G1

Towards a Dynamic Algorithm

u v

T = 2.3
T = 3.2

Deg > 2.3

Graph G0 Graph G1

• Idea: Store graphs Gi’s.
• When an edge is added update the Gi’s

Towards a Dynamic Algorithm

Graph G0

Graph G1

T = 2.6

T = 4.0

Chain effect!

• Idea: Store graphs Gi’s.
• When an edge is added update the Gi’s

Idea: fix Threshold T for all iterations

• Use same threshold T at each iteration.
• Easier to analyze and maintain.

For correct threshold T: same approximation of Bahamani
et al.’s algorithm.

You’d better
use T = 3.1

Moving Threshold (Only Additions)
1) Set T = 1 to compute densest subgraph H and
output it.

This provides a 2+eps approx.
in O(poly-log(n)) average time

Moving Threshold (Only Additions)
1) Set T = 1 to compute densest subgraph H and
output it.

2) Maintain the Gi’ using threshold T as long as
all nodes are removed in O(log(n)) steps.

This provides a 2+eps approx.
in O(poly-log(n)) average time

Moving Threshold (Only Additions)
1) Set T = 1 to compute densest subgraph H and
output it.

2) Maintain the Gi’ using threshold T as long as
all nodes are removed in O(log(n)) steps.

3) Repeat from 1) with higher threshold T = T * 2

This provides a 2+eps approx.
in O(poly-log(n)) average time

Fully-Dynamic Case

The analysis is significantly harder:

• The density can increase/decrease in complex
patterns…

• …densest subgraph is stable under random removals.
• We tackle the stability to recompute the subgraph

few times.

Experimental Evaluation - Datasets

• DBLP& Patent: co-authorship graph.

• LastFM: songs co-listened.

• Yahoo! Answers: >1 Billions edges. Edge if two users
answer the same question.

Evolution Densest Subgraph

 0

 1

 2

 3

 4

 5

 6

 7

 1970 1975 1980 1985 1990 1995 2000 2005 2010

 20

 40

 60

 80

 100

D
e

n
si

ty

S
iz

e

Time

Evolution Densest Subgraph

Density
Size

DBLP - Sliding Window 5 years

Evolution Densest Subgraph

Patent Citations - Sliding Window 5 years

 0

 5

 10

 15

 20

 25

 30

 35

 1975 1980 1985 1990 1995

 0

 50

 100

 150

 200

 250

 300
D

e
n
si

ty

S
iz

e

Time

Evolution Densest Subgraph

Density
Size

Evolution Densest Subgraph

Yahoo Answers - Sliding Window 100M edges

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

D
e
n
si

ty

S
iz

e

Time

Evolution Densest Subgraph

Density
Size

Efficient in Highly
Dynamic Datasets

with Billions of
Updates.

Update Time vs Epsilon

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

dblp
patent-coaut

patent-cit

lastfm

yahoo

M
ic

ro
se

co
n
d
s

Avg. Time per Update vs Epsilon

0.5
0.3
0.1

0.05

Scales much
better with
Epsilon than
worst case.

 Comparison with Static Algorithm

 1

 10

 100

 1000

 10000

 100000

dblp
patent-coaut

patent-cit

lastfm

M
ic

ro
se

co
n

d
s

Avg. Time per Update vs K

Our Algorithm
K=100000
K=10000
K=1000

Comparison With Static Algorithm

 1

 10

 100

dblp
patent-cit

patent-coaut

lastfm

R
e
la

tiv
e
 E

rr
o
r

Max Relative Error Static Algorithm vs K

100000
10000
1000

Conclusions and Future Work

• It is possible to maintain the densest subgraph
efficiently in dynamic graphs.

• Future work: Recent Techniques (Bhattacharya et al.)
to define 2+eps with adversarial removes?

• Top-k Densest Subgraph in Dynamic Graphs.

Thank you for your attention

Recent Results - STOC

Concurrently to our work Bhattacharya et al., STOC
2015 introduced a novel streaming algorithm for densest
subgraph with strong guarantees.

• Different model: Update vs Query time.
• Strong space constraints (cannot store entire graph).
• Adversarial additions and deletions.

• 4+eps approx with O(n poly log) space, O(poly log)
update time, O(n) query time.

• 2+eps approx with O(n poly log) space, higher time
complexity.

Incremental Case: Only Additions

Density vs Epsilon

 20

 40

 60

 80

 100

 120

 140

dblp
patent-coaut

patent-cit

lastfm

yahoo

 200

 400

 600

 800

 1000

 1200

 1400

D
e
n
si

ty
 (

E
x.

 L
a
st

F
m

 a
n
d
 Y

a
h
o
o
)

D
e
n
si

ty
 (

L
a
st

F
m

 a
n
d
 Y

a
h
o
o
)Maximum Density vs Epsilon

0.5
0.3
0.1

0.05

Max density is
stable with
different
epsilons.

Analysis of the Algorithm

We divide the edge additions in Rounds.

Round 1 Round 2

Add Add Add Add Add …

H HOverflow

T <- T(1+eps)

Run of
Static

Algorithm

Run of
Static

Algorithm

Round i

Add Add

H

output output output

Overflow

T <- T(1+eps)

Densest Subgraph - LP Primal

Definitions

We say that an algorithm is a approximation of the
densest subgraph problem for a > 1 if it outputs a graph
with density at least:

OPT / a

We say that an operation has T amortized time if for any
sequence of k update operations the total time is

O(k T)

Densest Subgraph - LP Primal Dual

• The dual problem is the well-known graph orientation
problem.

• Given undirected graph G find directed graph H
obtained orienting the edges of G arbitrarily, that
minimizes the maximum in-degree.

• If G has orientation of max in-degree < D then density
of densest subgraph is < D.

• Hence, if it is possible to remove all nodes by
recursively removing nodes with degree < D then max
density is < D.

Fully Dynamic Algorithm

We divide the edge additions and deletions in Rounds.

Round i

Add Rem Add

H Invariant Fails

Run
Static

Algorithm

… …

Fully Dynamic Algorithm

We divide the edge additions and deletions in Rounds.

Round i

Add Rem Add

H Invariant Fails

Run
Static

Algorithm

… …

Bad Round < O(m / log(n))
removals

Good Round > O(m / log(n))
removals

Fully Dynamic Algorithm

Round 1

Rem Rem Add… …
Round 2

Add Rem Add

Round 3

Add Add Add …

Good Bad Bad

Idea: in good rounds removals “pay” for all the
operations

We can show that there are never more than poly-log
consecutive bad rounds (w.h.p)

